Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Design of ANN Based Non-Linear Network Using Interconnection of Parallel Processor

    Anjani Kumar Singha1, Swaleha Zubair1, Areej Malibari2, Nitish Pathak3, Shabana Urooj4,*, Neelam Sharma5

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3491-3508, 2023, DOI:10.32604/csse.2023.029165 - 03 April 2023

    Abstract Suspicious mass traffic constantly evolves, making network behaviour tracing and structure more complex. Neural networks yield promising results by considering a sufficient number of processing elements with strong interconnections between them. They offer efficient computational Hopfield neural networks models and optimization constraints used by undergoing a good amount of parallelism to yield optimal results. Artificial neural network (ANN) offers optimal solutions in classifying and clustering the various reels of data, and the results obtained purely depend on identifying a problem. In this research work, the design of optimized applications is presented in an organized manner.… More >

  • Open Access

    ARTICLE

    An Optimal DPM Based Energy-Aware Task Scheduling for Performance Enhancement in Embedded MPSoC

    Hamayun Khan1,*, Irfan Ud Din2, Arshad Ali3, Mohammad Husain3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 2097-2113, 2023, DOI:10.32604/cmc.2023.032999 - 22 September 2022

    Abstract Minimizing the energy consumption to increase the life span and performance of multiprocessor system on chip (MPSoC) has become an integral chip design issue for multiprocessor systems. The performance measurement of computational systems is changing with the advancement in technology. Due to shrinking and smaller chip size power densities on-chip are increasing rapidly that increasing chip temperature in multi-core embedded technologies. The operating speed of the device decreases when power consumption reaches a threshold that causes a delay in complementary metal oxide semiconductor (CMOS) circuits because high on-chip temperature adversely affects the life span of… More >

  • Open Access

    ARTICLE

    Energy-Efficient Scheduling Based on Task Migration Policy Using DPM for Homogeneous MPSoCs

    Hamayun Khan1,*, Irfan Ud din2, Arshad Ali3, Sami Alshmrany3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 965-981, 2023, DOI:10.32604/cmc.2023.031223 - 22 September 2022

    Abstract Increasing the life span and efficiency of Multiprocessor System on Chip (MPSoC) by reducing power and energy utilization has become a critical chip design challenge for multiprocessor systems. With the advancement of technology, the performance management of central processing unit (CPU) is changing. Power densities and thermal effects are quickly increasing in multi-core embedded technologies due to shrinking of chip size. When energy consumption reaches a threshold that creates a delay in complementary metal oxide semiconductor (CMOS) circuits and reduces the speed by 10%–15% because excessive on-chip temperature shortens the chip’s life cycle. In this… More >

  • Open Access

    ARTICLE

    An Upper Bound of Task Loads in a Deadline-D All Busy Period for Multiprocessor Global EDF Real-Time Systems

    Fengxiang Zhang

    Computer Systems Science and Engineering, Vol.34, No.4, pp. 171-178, 2019, DOI:10.32604/csse.2019.34.171

    Abstract This paper addresses a number of mathematical issues related to multiprocessor global EDF platforms. We present a deadline-d all busy period and backward interference which are important concepts for multiprocessor EDF systems, and some general schedulability conditions for any studied job are proposed. We formally prove that at most m-1 different tasks’ jobs could contribute their execution time to an interval starting with a Pbusy−d, and we propose an approach for computing an exact upper bound of the total deadline-d task load in a given interval. Therefore, the proposed results are important foundations for constructing exact More >

  • Open Access

    ARTICLE

    Fast Parallel Finite Element Approximate Inverses

    G.A. Gravvanis, K.M. Giannoutakis1

    CMES-Computer Modeling in Engineering & Sciences, Vol.32, No.1, pp. 35-44, 2008, DOI:10.3970/cmes.2008.032.035

    Abstract A new parallel normalized optimized approximate inverse algorithm, based on the concept of the ``fish bone'' computational approach with cyclic distribution of the processors satisfying an antidiagonal data dependency, for computing classes of explicit approximate inverses, is introduced for symmetric multiprocessor systems. The parallel normalized explicit approximate inverses are used in conjunction with parallel normalized explicit preconditioned conjugate gradient square schemes, for the efficient solution of finite element sparse linear systems. The parallel design and implementation issues of the new proposed algorithms are discussed and the parallel performance is presented, using OpenMP. More >

Displaying 1-10 on page 1 of 5. Per Page