Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi-Model Fusion Framework Using Deep Learning for Visual-Textual Sentiment Classification

    Israa K. Salman Al-Tameemi1,3, Mohammad-Reza Feizi-Derakhshi1,*, Saeed Pashazadeh2, Mohammad Asadpour2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2145-2177, 2023, DOI:10.32604/cmc.2023.040997 - 30 August 2023

    Abstract Multimodal Sentiment Analysis (SA) is gaining popularity due to its broad application potential. The existing studies have focused on the SA of single modalities, such as texts or photos, posing challenges in effectively handling social media data with multiple modalities. Moreover, most multimodal research has concentrated on merely combining the two modalities rather than exploring their complex correlations, leading to unsatisfactory sentiment classification results. Motivated by this, we propose a new visual-textual sentiment classification model named Multi-Model Fusion (MMF), which uses a mixed fusion framework for SA to effectively capture the essential information and the… More >

  • Open Access

    ARTICLE

    Statistical Analysis and Multimodal Classification on Noisy Eye Tracker and Application Log Data of Children with Autism and ADHD

    Mahiye Uluyagmur Ozturka, Ayse Rodopman Armanb, Gresa Carkaxhiu Bulutc, Onur Tugce Poyraz Findikb, Sultan Seval Yilmazd, Herdem Aslan Gencb, M. Yanki Yazgane,f, Umut Tekera, Zehra Cataltepea

    Intelligent Automation & Soft Computing, Vol.24, No.4, pp. 891-905, 2018, DOI:10.31209/2018.100000058

    Abstract Emotion recognition behavior and performance may vary between people with major neurodevelopmental disorders such as Autism Spectrum Disorder (ASD), Attention Deficit Hyperactivity Disorder (ADHD) and control groups. It is crucial to identify these differences for early diagnosis and individual treatment purposes. This study represents a methodology by using statistical data analysis and machine learning to provide help to psychiatrists and therapists on the diagnosis and individualized treatment of participants with ASD and ADHD. In this paper we propose an emotion recognition experiment environment and collect eye tracker fixation data together with the application log data More >

Displaying 1-10 on page 1 of 2. Per Page