Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Three-Dimensional Multiferroic Structures under Time-Harmonic Loading

    Sonal Nirwal1,3,*, Ernian Pan1,2,*, Chih-Ping Lin1,2, Quoc Kinh Tran1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1165-1191, 2024, DOI:10.32604/cmes.2024.054255

    Abstract Magneto-electro-elastic (MEE) materials are a specific class of advanced smart materials that simultaneously manifest the coupling behavior under electric, magnetic, and mechanical loads. This unique combination of properties allows MEE materials to respond to mechanical, electric, and magnetic stimuli, making them versatile for various applications. This paper investigates the static and time-harmonic field solutions induced by the surface load in a three-dimensional (3D) multilayered transversally isotropic (TI) linear MEE layered solid. Green’s functions corresponding to the applied uniform load (in both horizontal and vertical directions) are derived using the Fourier-Bessel series (FBS) system of vector… More >

  • Open Access

    ARTICLE

    Green's Function for Multilayers with Interfacial Membrane and Flexural Rigidities1

    B. Yang2, V. K. Tewary3

    CMC-Computers, Materials & Continua, Vol.8, No.1, pp. 23-32, 2008, DOI:10.3970/cmc.2008.008.023

    Abstract A three-dimensional Green's function for a material system consisting of anisotropic and linearly elastic planar multilayers with interfacial membrane and flexural rigidities has been derived. The Stroh formalism and two-dimensional Fourier transforms are applied to derive the general solution for each homogeneous layer. The Green's function for the multilayers is then solved by imposing the surface boundary condition, the interfacial displacement continuity condition, and the interfacial traction discontinuity condition. The last condition is given by the membrane and bending equilibrium equations of the interphases modeled as Kirchhoff plates. Numerical results that demonstrate the validity and More >

  • Open Access

    ARTICLE

    Efficient Green's Function Modeling of Line and Surface Defects in Multilayered Anisotropic Elastic and Piezoelectric Materials1

    B. Yang2, V. K. Tewary3

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 165-178, 2006, DOI:10.3970/cmes.2006.015.165

    Abstract Green's function (GF) modeling of defects may take effect only if the GF as well as its various integrals over a line, a surface and/or a volume can be efficiently evaluated. The GF is needed in modeling a point defect, while integrals are needed in modeling line, surface and volumetric defects. In a matrix of multilayered, generally anisotropic and linearly elastic and piezoelectric materials, the GF has been derived by applying 2D Fourier transforms and the Stroh formalism. Its use involves another two dimensions of integration in the Fourier inverse transform. A semi-analytical scheme has… More >

Displaying 1-10 on page 1 of 3. Per Page