Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    ResMHA-Net: Enhancing Glioma Segmentation and Survival Prediction Using a Novel Deep Learning Framework

    Novsheena Rasool1,*, Javaid Iqbal Bhat1, Najib Ben Aoun2,3, Abdullah Alharthi4, Niyaz Ahmad Wani5, Vikram Chopra6, Muhammad Shahid Anwar7,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 885-909, 2024, DOI:10.32604/cmc.2024.055900 - 15 October 2024

    Abstract Gliomas are aggressive brain tumors known for their heterogeneity, unclear borders, and diverse locations on Magnetic Resonance Imaging (MRI) scans. These factors present significant challenges for MRI-based segmentation, a crucial step for effective treatment planning and monitoring of glioma progression. This study proposes a novel deep learning framework, ResNet Multi-Head Attention U-Net (ResMHA-Net), to address these challenges and enhance glioma segmentation accuracy. ResMHA-Net leverages the strengths of both residual blocks from the ResNet architecture and multi-head attention mechanisms. This powerful combination empowers the network to prioritize informative regions within the 3D MRI data and capture… More >

  • Open Access

    ARTICLE

    Multimodal Sentiment Analysis Based on a Cross-Modal Multihead Attention Mechanism

    Lujuan Deng, Boyi Liu*, Zuhe Li

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1157-1170, 2024, DOI:10.32604/cmc.2023.042150 - 30 January 2024

    Abstract Multimodal sentiment analysis aims to understand people’s emotions and opinions from diverse data. Concatenating or multiplying various modalities is a traditional multi-modal sentiment analysis fusion method. This fusion method does not utilize the correlation information between modalities. To solve this problem, this paper proposes a model based on a multi-head attention mechanism. First, after preprocessing the original data. Then, the feature representation is converted into a sequence of word vectors and positional encoding is introduced to better understand the semantic and sequential information in the input sequence. Next, the input coding sequence is fed into… More >

  • Open Access

    ARTICLE

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

    B. Ramesh, Kuruva Lakshmanna*

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2513-2528, 2023, DOI:10.32604/cmes.2023.028944 - 03 August 2023

    Abstract Major chronic diseases such as Cardiovascular Disease (CVD), diabetes, and cancer impose a significant burden on people and healthcare systems around the globe. Recently, Deep Learning (DL) has shown great potential for the development of intelligent mobile Health (mHealth) interventions for chronic diseases that could revolutionize the delivery of health care anytime, anywhere. The aim of this study is to present a systematic review of studies that have used DL based on mHealth data for the diagnosis, prognosis, management, and treatment of major chronic diseases and advance our understanding of the progress made in this… More > Graphic Abstract

    Multi Head Deep Neural Network Prediction Methodology for High-Risk Cardiovascular Disease on Diabetes Mellitus

Displaying 1-10 on page 1 of 3. Per Page