Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design

    Liang Zeng1,2, Mai Hu1, Chenning Zhang1, Quan Yuan1, Shanshan Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1677-1709, 2024, DOI:10.32604/cmc.2024.049717 - 18 July 2024

    Abstract Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines. To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization (NGO) algorithm, particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes, this study introduces an advanced Improved Northern Goshawk Optimization (INGO) algorithm. This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency. Initially, a tent chaotic map is employed in the initialization phase to generate a diverse initial population, providing high-quality feasible solutions. Subsequently, after… More >

  • Open Access

    ARTICLE

    Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

    Deng Yang1, Chong Zhou1,*, Xuemeng Wei2, Zhikun Chen3, Zheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1563-1593, 2024, DOI:10.32604/cmes.2024.048049 - 20 May 2024

    Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The… More >

  • Open Access

    ARTICLE

    Hybrid Multi-Strategy Aquila Optimization with Deep Learning Driven Crop Type Classification on Hyperspectral Images

    Sultan Alahmari1, Saud Yonbawi2, Suneetha Racharla3, E. Laxmi Lydia4, Mohamad Khairi Ishak5, Hend Khalid Alkahtani6,*, Ayman Aljarbouh7, Samih M. Mostafa8

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 375-391, 2023, DOI:10.32604/csse.2023.036362 - 26 May 2023

    Abstract Hyperspectral imaging instruments could capture detailed spatial information and rich spectral signs of observed scenes. Much spatial information and spectral signatures of hyperspectral images (HSIs) present greater potential for detecting and classifying fine crops. The accurate classification of crop kinds utilizing hyperspectral remote sensing imaging (RSI) has become an indispensable application in the agricultural domain. It is significant for the prediction and growth monitoring of crop yields. Amongst the deep learning (DL) techniques, Convolution Neural Network (CNN) was the best method for classifying HSI for their incredible local contextual modeling ability, enabling spectral and spatial… More >

  • Open Access

    ARTICLE

    Multi-Strategy Boosted Spider Monkey Optimization Algorithm for Feature Selection

    Jianguo Zheng, Shuilin Chen*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3619-3635, 2023, DOI:10.32604/csse.2023.038025 - 03 April 2023

    Abstract To solve the problem of slow convergence and easy to get into the local optimum of the spider monkey optimization algorithm, this paper presents a new algorithm based on multi-strategy (ISMO). First, the initial population is generated by a refracted opposition-based learning strategy to enhance diversity and ergodicity. Second, this paper introduces a non-linear adaptive dynamic weight factor to improve convergence efficiency. Then, using the crisscross strategy, using the horizontal crossover to enhance the global search and vertical crossover to keep the diversity of the population to avoid being trapped in the local optimum. At More >

  • Open Access

    ARTICLE

    An Improved BPNN Prediction Method Based on Multi-Strategy Sparrow Search Algorithm

    Xiangyan Tang1,2, Dengfang Feng2,*, KeQiu Li1, Jingxin Liu2, Jinyang Song3, Victor S. Sheng4

    CMC-Computers, Materials & Continua, Vol.74, No.2, pp. 2789-2802, 2023, DOI:10.32604/cmc.2023.031304 - 31 October 2022

    Abstract Data prediction can improve the science of decision-making by making predictions about what happens in daily life based on natural law trends. Back propagation (BP) neural network is a widely used prediction method. To reduce its probability of falling into local optimum and improve the prediction accuracy, we propose an improved BP neural network prediction method based on a multi-strategy sparrow search algorithm (MSSA). The weights and thresholds of the BP neural network are optimized using the sparrow search algorithm (SSA). Three strategies are designed to improve the SSA to enhance its optimization-seeking ability, leading More >

Displaying 1-10 on page 1 of 5. Per Page