Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (19)
  • Open Access

    ARTICLE

    Fault Diagnosis of Wind Turbine Blades Based on Multi-Sensor Weighted Alignment Fusion in Noisy Environments

    Lifu He1, Zhongchu Huang1, Haidong Shao2,*, Zhangbo Hu1, Yuting Wang1, Jie Mei1, Xiaofei Zhang3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.073227 - 12 January 2026

    Abstract Deep learning-based wind turbine blade fault diagnosis has been widely applied due to its advantages in end-to-end feature extraction. However, several challenges remain. First, signal noise collected during blade operation masks fault features, severely impairing the fault diagnosis performance of deep learning models. Second, current blade fault diagnosis often relies on single-sensor data, resulting in limited monitoring dimensions and ability to comprehensively capture complex fault states. To address these issues, a multi-sensor fusion-based wind turbine blade fault diagnosis method is proposed. Specifically, a CNN-Transformer Coupled Feature Learning Architecture is constructed to enhance the ability to More >

  • Open Access

    REVIEW

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

    Mirza Murad Baig1, Muhammad Rehan Faheem2,*, Lal Khan3,*, Hannan Adeel2, Syed Asim Ali Shah4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 2895-2935, 2025, DOI:10.32604/cmes.2025.073172 - 23 December 2025

    Abstract With growing urban areas, the climate continues to change as a result of growing populations, and hence, the demand for better emergency response systems has become more important than ever. Human Behaviour Classification (HBC) systems have started to play a vital role by analysing data from different sources to detect signs of emergencies. These systems are being used in many critical areas like healthcare, public safety, and disaster management to improve response time and to prepare ahead of time. But detecting human behaviour in such stressful conditions is not simple; it often comes with noisy… More > Graphic Abstract

    Human Behaviour Classification in Emergency Situations Using Machine Learning with Multimodal Data: A Systematic Review (2020–2025)

  • Open Access

    ARTICLE

    Attitude Estimation Using an Enhanced Error-State Kalman Filter with Multi-Sensor Fusion

    Yu Tao1, Tian Yin2, Yang Jie1,*

    Journal on Artificial Intelligence, Vol.7, pp. 549-570, 2025, DOI:10.32604/jai.2025.072727 - 01 December 2025

    Abstract To address the issue of insufficient accuracy in attitude estimation using Inertial Measurement Units (IMU), this paper proposes a multi-sensor fusion attitude estimation method based on an improved Error-State Kalman Filter (ESKF). Several adaptive mechanisms are introduced within the standard ESKF framework: first, the process noise covariance is dynamically adjusted based on gyroscope angular velocity to enhance the algorithm’s adaptability under both static and dynamic conditions; second, the Sage-Husa algorithm is employed to estimate the measurement noise covariance of the accelerometer and magnetometer in real-time, mitigating disturbances caused by external accelerations and magnetic fields. Additionally,… More >

  • Open Access

    ARTICLE

    A Multi-Sensor and PCSV Asymptotic Classification Method for Additive Manufacturing High Precision and Efficient Fault Diagnosis

    Lingfeng Wang1, Dongbiao Li2, Fei Xing1,3,*, Qiang Wang4, Jianjun Shi5

    Structural Durability & Health Monitoring, Vol.19, No.5, pp. 1183-1201, 2025, DOI:10.32604/sdhm.2025.063701 - 05 September 2025

    Abstract With the intelligent upgrading of manufacturing equipment, achieving high-precision and efficient fault diagnosis is essential to enhance equipment stability and increase productivity. Online monitoring and fault diagnosis technology play a critical role in improving the stability of metal additive manufacturing equipment. However, the limited proportion of fault data during operation challenges the accuracy and efficiency of multi-classification models due to excessive redundant data. A multi-sensor and principal component analysis (PCA) and support vector machine (SVM) asymptotic classification (PCSV) for additive manufacturing fault diagnosis method is proposed, and it divides the fault diagnosis into two steps.… More >

  • Open Access

    ARTICLE

    Optimized Attack and Detection on Multi-Sensor Cyber-Physical System

    Fangju Zhou1, Hanbo Zhang2, Na Ye1, Jing Huang1, Zhu Ren1,*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4539-4561, 2025, DOI:10.32604/cmc.2025.065946 - 30 July 2025

    Abstract This paper explores security risks in state estimation based on multi-sensor systems that implement a Kalman filter and a detector. When measurements are transmitted via wireless networks to a remote estimator, the innovation sequence becomes susceptible to interception and manipulation by adversaries. We consider a class of linear deception attacks, wherein the attacker alters the innovation to degrade estimation accuracy while maintaining stealth against the detector. Given the inherent volatility of the detection function based on the detector, we propose broadening the traditional feasibility constraint to accommodate a certain degree of deviation from the distribution… More >

  • Open Access

    ARTICLE

    Research on Vehicle Safety Based on Multi-Sensor Feature Fusion for Autonomous Driving Task

    Yang Su1,*, Xianrang Shi1, Tinglun Song2

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5831-5848, 2025, DOI:10.32604/cmc.2025.064036 - 19 May 2025

    Abstract Ensuring that autonomous vehicles maintain high precision and rapid response capabilities in complex and dynamic driving environments is a critical challenge in the field of autonomous driving. This study aims to enhance the learning efficiency of multi-sensor feature fusion in autonomous driving tasks, thereby improving the safety and responsiveness of the system. To achieve this goal, we propose an innovative multi-sensor feature fusion model that integrates three distinct modalities: visual, radar, and lidar data. The model optimizes the feature fusion process through the introduction of two novel mechanisms: Sparse Channel Pooling (SCP) and Residual Triplet-Attention… More >

  • Open Access

    ARTICLE

    Point-Based Fusion for Multimodal 3D Detection in Autonomous Driving

    Xinxin Liu, Bin Ye*

    Computer Systems Science and Engineering, Vol.49, pp. 287-300, 2025, DOI:10.32604/csse.2025.061655 - 20 February 2025

    Abstract In the broader field of mechanical technology, and particularly in the context of self-driving vehicles, cameras and Light Detection and Ranging (LiDAR) sensors provide complementary modalities that hold significant potential for sensor fusion. However, directly merging multi-sensor data through point projection often results in information loss due to quantization, and managing the differing data formats from multiple sensors remains a persistent challenge. To address these issues, we propose a new fusion method that leverages continuous convolution, point-pooling, and a learned Multilayer Perceptron (MLP) to achieve superior detection performance. Our approach integrates the segmentation mask with… More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Scheme for Railway Switch Machine Using Multi-Sensor Fusion Tensor Machine

    Chen Chen1,2, Zhongwei Xu1, Meng Mei1,*, Kai Huang3, Siu Ming Lo2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4533-4549, 2024, DOI:10.32604/cmc.2024.048995 - 20 June 2024

    Abstract Railway switch machine is essential for maintaining the safety and punctuality of train operations. A data-driven fault diagnosis scheme for railway switch machine using tensor machine and multi-representation monitoring data is developed herein. Unlike existing methods, this approach takes into account the spatial information of the time series monitoring data, aligning with the domain expertise of on-site manual monitoring. Besides, a multi-sensor fusion tensor machine is designed to improve single signal data’s limitations in insufficient information. First, one-dimensional signal data is preprocessed and transformed into two-dimensional images. Afterward, the fusion feature tensor is created by More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

Displaying 1-10 on page 1 of 19. Per Page