Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (15)
  • Open Access

    ARTICLE

    IMTNet: Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid

    Huan Wang1, Hong Wang1, Zhongyuan Jiang2,*, Qing Qian1, Yong Long1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.053740 - 12 September 2024

    Abstract Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses… More >

  • Open Access

    ARTICLE

    Source Camera Identification Algorithm Based on Multi-Scale Feature Fusion

    Jianfeng Lu1,2, Caijin Li1, Xiangye Huang1, Chen Cui3, Mahmoud Emam1,2,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3047-3065, 2024, DOI:10.32604/cmc.2024.053680 - 15 August 2024

    Abstract The widespread availability of digital multimedia data has led to a new challenge in digital forensics. Traditional source camera identification algorithms usually rely on various traces in the capturing process. However, these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms. Convolutional Neural Networks (CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices. However, their performances is not ideal in case of distinguishing between individual devices of the same model, because cameras of the same model typically use the same… More >

  • Open Access

    ARTICLE

    Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism

    Bing Li1,2,*, Liangyu Wang1, Xia Liu1,2, Hongbin Fan1, Bo Wang3, Shoudi Tong1

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1543-1561, 2024, DOI:10.32604/cmc.2024.052009 - 18 July 2024

    Abstract Nuclear magnetic resonance imaging of breasts often presents complex backgrounds. Breast tumors exhibit varying sizes, uneven intensity, and indistinct boundaries. These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation. Thus, we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms. Initially, the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs. Subsequently, we devise a fusion network incorporating multi-scale features and boundary attention mechanisms for breast tumor segmentation. We incorporate multi-scale parallel dilated convolution modules into… More >

  • Open Access

    ARTICLE

    Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2

    Zhilin Li1,2, Yuxin Li1, Chunyu Yan1, Peng Yan1, Xiutong Li1, Mei Yu1, Tingchi Wen4,5, Benliang Xie1,2,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 679-694, 2024, DOI:10.32604/cmc.2024.051526 - 18 July 2024

    Abstract Diseases in tea trees can result in significant losses in both the quality and quantity of tea production. Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations. However, existing methods face challenges such as a high number of parameters and low recognition accuracy, which hinders their application in tea plantation monitoring equipment. This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves, to address these challenges. The proposed method first embeds a Coordinate Attention (CA) module into the original MobileNetV2 network, enabling the model to locate disease More >

  • Open Access

    ARTICLE

    Research on Multi-Scale Feature Fusion Network Algorithm Based on Brain Tumor Medical Image Classification

    Yuting Zhou1, Xuemei Yang1, Junping Yin2,3,4,*, Shiqi Liu1

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5313-5333, 2024, DOI:10.32604/cmc.2024.052060 - 20 June 2024

    Abstract Gliomas have the highest mortality rate of all brain tumors. Correctly classifying the glioma risk period can help doctors make reasonable treatment plans and improve patients’ survival rates. This paper proposes a hierarchical multi-scale attention feature fusion medical image classification network (HMAC-Net), which effectively combines global features and local features. The network framework consists of three parallel layers: The global feature extraction layer, the local feature extraction layer, and the multi-scale feature fusion layer. A linear sparse attention mechanism is designed in the global feature extraction layer to reduce information redundancy. In the local feature… More >

  • Open Access

    ARTICLE

    Abnormal Traffic Detection for Internet of Things Based on an Improved Residual Network

    Tingting Su1, Jia Wang1,*, Wei Hu2,*, Gaoqiang Dong1, Jeon Gwanggil3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4433-4448, 2024, DOI:10.32604/cmc.2024.051535 - 20 June 2024

    Abstract Along with the progression of Internet of Things (IoT) technology, network terminals are becoming continuously more intelligent. IoT has been widely applied in various scenarios, including urban infrastructure, transportation, industry, personal life, and other socio-economic fields. The introduction of deep learning has brought new security challenges, like an increment in abnormal traffic, which threatens network security. Insufficient feature extraction leads to less accurate classification results. In abnormal traffic detection, the data of network traffic is high-dimensional and complex. This data not only increases the computational burden of model training but also makes information extraction more… More >

  • Open Access

    ARTICLE

    MSD-Net: Pneumonia Classification Model Based on Multi-Scale Directional Feature Enhancement

    Tao Zhou1,3, Yujie Guo1,3,*, Caiyue Peng1,3, Yuxia Niu1,3, Yunfeng Pan1,3, Huiling Lu2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4863-4882, 2024, DOI:10.32604/cmc.2024.050767 - 20 June 2024

    Abstract Computer-aided diagnosis of pneumonia based on deep learning is a research hotspot. However, there are some problems that the features of different sizes and different directions are not sufficient when extracting the features in lung X-ray images. A pneumonia classification model based on multi-scale directional feature enhancement MSD-Net is proposed in this paper. The main innovations are as follows: Firstly, the Multi-scale Residual Feature Extraction Module (MRFEM) is designed to effectively extract multi-scale features. The MRFEM uses dilated convolutions with different expansion rates to increase the receptive field and extract multi-scale features effectively. Secondly, the… More >

  • Open Access

    ARTICLE

    Multi-Scale Mixed Attention Tea Shoot Instance Segmentation Model

    Dongmei Chen1, Peipei Cao1, Lijie Yan1, Huidong Chen1, Jia Lin1, Xin Li2, Lin Yuan3, Kaihua Wu1,*

    Phyton-International Journal of Experimental Botany, Vol.93, No.2, pp. 261-275, 2024, DOI:10.32604/phyton.2024.046331 - 27 February 2024

    Abstract Tea leaf picking is a crucial stage in tea production that directly influences the quality and value of the tea. Traditional tea-picking machines may compromise the quality of the tea leaves. High-quality teas are often handpicked and need more delicate operations in intelligent picking machines. Compared with traditional image processing techniques, deep learning models have stronger feature extraction capabilities, and better generalization and are more suitable for practical tea shoot harvesting. However, current research mostly focuses on shoot detection and cannot directly accomplish end-to-end shoot segmentation tasks. We propose a tea shoot instance segmentation model… More >

  • Open Access

    ARTICLE

    Bridge Crack Segmentation Method Based on Parallel Attention Mechanism and Multi-Scale Features Fusion

    Jianwei Yuan1, Xinli Song1,*, Huaijian Pu2, Zhixiong Zheng3, Ziyang Niu3

    CMC-Computers, Materials & Continua, Vol.74, No.3, pp. 6485-6503, 2023, DOI:10.32604/cmc.2023.035165 - 28 December 2022

    Abstract Regular inspection of bridge cracks is crucial to bridge maintenance and repair. The traditional manual crack detection methods are time-consuming, dangerous and subjective. At the same time, for the existing mainstream vision-based automatic crack detection algorithms, it is challenging to detect fine cracks and balance the detection accuracy and speed. Therefore, this paper proposes a new bridge crack segmentation method based on parallel attention mechanism and multi-scale features fusion on top of the DeeplabV3+ network framework. First, the improved lightweight MobileNet-v2 network and dilated separable convolution are integrated into the original DeeplabV3+ network to improve… More >

  • Open Access

    ARTICLE

    Disease Recognition of Apple Leaf Using Lightweight Multi-Scale Network with ECANet

    Helong Yu, Xianhe Cheng, Ziqing Li, Qi Cai, Chunguang Bi*

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 711-738, 2022, DOI:10.32604/cmes.2022.020263 - 27 June 2022

    Abstract To solve the problem of difficulty in identifying apple diseases in the natural environment and the low application rate of deep learning recognition networks, a lightweight ResNet (LW-ResNet) model for apple disease recognition is proposed. Based on the deep residual network (ResNet18), the multi-scale feature extraction layer is constructed by group convolution to realize the compression model and improve the extraction ability of different sizes of lesion features. By improving the identity mapping structure to reduce information loss. By introducing the efficient channel attention module (ECANet) to suppress noise from a complex background. The experimental… More >

Displaying 1-10 on page 1 of 15. Per Page