Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Multi-Strategy Assisted Multi-Objective Whale Optimization Algorithm for Feature Selection

    Deng Yang1, Chong Zhou1,*, Xuemeng Wei2, Zhikun Chen3, Zheng Zhang4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1563-1593, 2024, DOI:10.32604/cmes.2024.048049 - 20 May 2024

    Abstract In classification problems, datasets often contain a large amount of features, but not all of them are relevant for accurate classification. In fact, irrelevant features may even hinder classification accuracy. Feature selection aims to alleviate this issue by minimizing the number of features in the subset while simultaneously minimizing the classification error rate. Single-objective optimization approaches employ an evaluation function designed as an aggregate function with a parameter, but the results obtained depend on the value of the parameter. To eliminate this parameter’s influence, the problem can be reformulated as a multi-objective optimization problem. The… More >

  • Open Access

    ARTICLE

    An Adaptive Classifier Based Approach for Crowd Anomaly Detection

    Sofia Nishath, P. S. Nithya Darisini*

    CMC-Computers, Materials & Continua, Vol.72, No.1, pp. 349-364, 2022, DOI:10.32604/cmc.2022.023935 - 24 February 2022

    Abstract Crowd Anomaly Detection has become a challenge in intelligent video surveillance system and security. Intelligent video surveillance systems make extensive use of data mining, machine learning and deep learning methods. In this paper a novel approach is proposed to identify abnormal occurrences in crowded situations using deep learning. In this approach, Adaptive GoogleNet Neural Network Classifier with Multi-Objective Whale Optimization Algorithm are applied to predict the abnormal video frames in the crowded scenes. We use multiple instance learning (MIL) to dynamically develop a deep anomalous ranking framework. This technique predicts higher anomalous values for abnormal More >

Displaying 1-10 on page 1 of 2. Per Page