Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (120)
  • Open Access

    ARTICLE

    Thermodynamic, Economic, and Environmental Analyses and Multi-Objective Optimization of Dual-Pressure Organic Rankine Cycle System with Dual-Stage Ejector

    Guowei Li1,*, Shujuan Bu2, Xinle Yang2, Kaijie Liang1, Zhengri Shao1, Xiaobei Song1, Yitian Tang3, Dejing Zong4

    Energy Engineering, Vol.121, No.12, pp. 3843-3874, 2024, DOI:10.32604/ee.2024.056195 - 22 November 2024

    Abstract A novel dual-pressure organic Rankine cycle system (DPORC) with a dual-stage ejector (DE-DPORC) is proposed. The system incorporates a dual-stage ejector that utilizes a small amount of extraction steam from the high-pressure expander to pressurize a large quantity of exhaust gas to perform work for the low-pressure expander. This innovative approach addresses condensing pressure limitations, reduces power consumption during pressurization, minimizes heat loss, and enhances the utilization efficiency of waste heat steam. A thermodynamic model is developed with net output work, thermal efficiency, and exergy efficiency (Wnet, ηt, ηex) as evaluation criteria, an economic model is established… More >

  • Open Access

    ARTICLE

    A Discrete Multi-Objective Squirrel Search Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flowshop with Variable Processing Speed

    Liang Zeng1,2,3, Ziyang Ding1, Junyang Shi1, Shanshan Wang1,2,3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1757-1787, 2024, DOI:10.32604/cmc.2024.055574 - 15 October 2024

    Abstract In the manufacturing industry, reasonable scheduling can greatly improve production efficiency, while excessive resource consumption highlights the growing significance of energy conservation in production. This paper studies the problem of energy-efficient distributed heterogeneous permutation flowshop problem with variable processing speed (DHPFSP-VPS), considering both the minimum makespan and total energy consumption (TEC) as objectives. A discrete multi-objective squirrel search algorithm (DMSSA) is proposed to solve the DHPFSP-VPS. DMSSA makes four improvements based on the squirrel search algorithm. Firstly, in terms of the population initialization strategy, four hybrid initialization methods targeting different objectives are proposed to enhance… More >

  • Open Access

    ARTICLE

    DeepSurNet-NSGA II: Deep Surrogate Model-Assisted Multi-Objective Evolutionary Algorithm for Enhancing Leg Linkage in Walking Robots

    Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*, Arman Ibrayeva1, Zeinel Momynkulov1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 229-249, 2024, DOI:10.32604/cmc.2024.053075 - 15 October 2024

    Abstract This research paper presents a comprehensive investigation into the effectiveness of the DeepSurNet-NSGA II (Deep Surrogate Model-Assisted Non-dominated Sorting Genetic Algorithm II) for solving complex multi-objective optimization problems, with a particular focus on robotic leg-linkage design. The study introduces an innovative approach that integrates deep learning-based surrogate models with the robust Non-dominated Sorting Genetic Algorithm II, aiming to enhance the efficiency and precision of the optimization process. Through a series of empirical experiments and algorithmic analyses, the paper demonstrates a high degree of correlation between solutions generated by the DeepSurNet-NSGA II and those obtained from… More >

  • Open Access

    ARTICLE

    Hybrid Task Scheduling Algorithm for Makespan Optimisation in Cloud Computing: A Performance Evaluation

    Abdulrahman M. Abdulghani*

    Journal on Artificial Intelligence, Vol.6, pp. 241-259, 2024, DOI:10.32604/jai.2024.056259 - 16 October 2024

    Abstract Cloud computing has rapidly evolved into a critical technology, seamlessly integrating into various aspects of daily life. As user demand for cloud services continues to surge, the need for efficient virtualization and resource management becomes paramount. At the core of this efficiency lies task scheduling, a complex process that determines how tasks are allocated and executed across cloud resources. While extensive research has been conducted in the area of task scheduling, optimizing multiple objectives simultaneously remains a significant challenge due to the NP (Non-deterministic Polynomial) Complete nature of the problem. This study aims to address… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Multi-Product Parallel Disassembly Line Balancing Problem Considering Multi-Skilled Workers Using a Discrete Chemical Reaction Optimization Algorithm

    Xiwang Guo1, Liangbo Zhou1, Zhiwei Zhang1,*, Liang Qi2,*, Jiacun Wang3, Shujin Qin4, Jinrui Cao5

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4475-4496, 2024, DOI:10.32604/cmc.2024.048123 - 12 September 2024

    Abstract This work investigates a multi-product parallel disassembly line balancing problem considering multi-skilled workers. A mathematical model for the parallel disassembly line is established to achieve maximized disassembly profit and minimized workstation cycle time. Based on a product’s AND/OR graph, matrices for task-skill, worker-skill, precedence relationships, and disassembly correlations are developed. A multi-objective discrete chemical reaction optimization algorithm is designed. To enhance solution diversity, improvements are made to four reactions: decomposition, synthesis, intermolecular ineffective collision, and wall invalid collision reaction, completing the evolution of molecular individuals. The established model and improved algorithm are applied to ball More >

  • Open Access

    ARTICLE

    Research on Site Planning of Mobile Communication Network

    Jiahan He1, Guangjun Liang1,2,3,*, Meng Li4, Kefan Yao1, Bixia Wang1, Lu Li5

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3243-3261, 2024, DOI:10.32604/cmc.2024.051710 - 15 August 2024

    Abstract In this paper, considering the cost of base station, coverage, call quality, and other practical factors, a multi-objective optimal site planning scheme is proposed. Firstly, based on practical needs, mathematical modeling methods were used to establish mathematical expressions for the three sub-objectives of cost objectives, coverage objectives, and quality objectives. Then, a multi-objective optimization model was established by combining threshold and traffic volume constraints. In order to reduce the time complexity of optimization, a non-dominated sorting genetic algorithm (NSGA) is used to solve the multi-objective optimization problem of site planning. Finally, a strategy for clustering… More >

  • Open Access

    ARTICLE

    A Prediction-Based Multi-Objective VM Consolidation Approach for Cloud Data Centers

    Xialin Liu1,2,3,*, Junsheng Wu4, Lijun Chen2,3, Jiyuan Hu5

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1601-1631, 2024, DOI:10.32604/cmc.2024.050626 - 18 July 2024

    Abstract Virtual machine (VM) consolidation aims to run VMs on the least number of physical machines (PMs). The optimal consolidation significantly reduces energy consumption (EC), quality of service (QoS) in applications, and resource utilization. This paper proposes a prediction-based multi-objective VM consolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value. We use a hybrid model based on Auto-Regressive Integrated Moving Average (ARIMA) and Support Vector Regression (SVR) (HPAS) as a prediction model and consolidate VMs to PMs based on prediction results by HPAS, aiming at minimizing the More >

  • Open Access

    ARTICLE

    An Immune-Inspired Approach with Interval Allocation in Solving Multimodal Multi-Objective Optimization Problems with Local Pareto Sets

    Weiwei Zhang1, Jiaqiang Li1, Chao Wang2, Meng Li3, Zhi Rao4,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4237-4257, 2024, DOI:10.32604/cmc.2024.050430 - 20 June 2024

    Abstract In practical engineering, multi-objective optimization often encounters situations where multiple Pareto sets (PS) in the decision space correspond to the same Pareto front (PF) in the objective space, known as Multi-Modal Multi-Objective Optimization Problems (MMOP). Locating multiple equivalent global PSs poses a significant challenge in real-world applications, especially considering the existence of local PSs. Effectively identifying and locating both global and local PSs is a major challenge. To tackle this issue, we introduce an immune-inspired reproduction strategy designed to produce more offspring in less crowded, promising regions and regulate the number of offspring in areas… More >

  • Open Access

    ARTICLE

    Enhancing Hyper-Spectral Image Classification with Reinforcement Learning and Advanced Multi-Objective Binary Grey Wolf Optimization

    Mehrdad Shoeibi1, Mohammad Mehdi Sharifi Nevisi2, Reza Salehi3, Diego Martín3,*, Zahra Halimi4, Sahba Baniasadi5

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3469-3493, 2024, DOI:10.32604/cmc.2024.049847 - 20 June 2024

    Abstract Hyperspectral (HS) image classification plays a crucial role in numerous areas including remote sensing (RS), agriculture, and the monitoring of the environment. Optimal band selection in HS images is crucial for improving the efficiency and accuracy of image classification. This process involves selecting the most informative spectral bands, which leads to a reduction in data volume. Focusing on these key bands also enhances the accuracy of classification algorithms, as redundant or irrelevant bands, which can introduce noise and lower model performance, are excluded. In this paper, we propose an approach for HS image classification using… More >

  • Open Access

    ARTICLE

    A Multi-Objective Optimization for Locating Maintenance Stations and Operator Dispatching of Corrective Maintenance

    Chao-Lung Yang1,*, Melkamu Mengistnew Teshome1, Yu-Zhen Yeh1, Tamrat Yifter Meles2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3519-3547, 2024, DOI:10.32604/cmc.2024.048462 - 20 June 2024

    Abstract In this study, we introduce a novel multi-objective optimization model tailored for modern manufacturing, aiming to mitigate the cost impacts of operational disruptions through optimized corrective maintenance. Central to our approach is the strategic placement of maintenance stations and the efficient allocation of personnel, addressing a crucial gap in the integration of maintenance personnel dispatching and station selection. Our model uniquely combines the spatial distribution of machinery with the expertise of operators to achieve a harmonious balance between maintenance efficiency and cost-effectiveness. The core of our methodology is the NSGA III+ Dispatch, an advanced adaptation… More >

Displaying 1-10 on page 1 of 120. Per Page