Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (26)
  • Open Access

    ARTICLE

    Segmentation of Head and Neck Tumors Using Dual PET/CT Imaging: Comparative Analysis of 2D, 2.5D, and 3D Approaches Using UNet Transformer

    Mohammed A. Mahdi1, Shahanawaj Ahamad2, Sawsan A. Saad3, Alaa Dafhalla3, Alawi Alqushaibi4, Rizwan Qureshi5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2351-2373, 2024, DOI:10.32604/cmes.2024.055723 - 31 October 2024

    Abstract The segmentation of head and neck (H&N) tumors in dual Positron Emission Tomography/Computed Tomography (PET/CT) imaging is a critical task in medical imaging, providing essential information for diagnosis, treatment planning, and outcome prediction. Motivated by the need for more accurate and robust segmentation methods, this study addresses key research gaps in the application of deep learning techniques to multimodal medical images. Specifically, it investigates the limitations of existing 2D and 3D models in capturing complex tumor structures and proposes an innovative 2.5D UNet Transformer model as a solution. The primary research questions guiding this study… More >

  • Open Access

    ARTICLE

    Research on Fine-Grained Recognition Method for Sensitive Information in Social Networks Based on CLIP

    Menghan Zhang1,2, Fangfang Shan1,2,*, Mengyao Liu1,2, Zhenyu Wang1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1565-1580, 2024, DOI:10.32604/cmc.2024.056008 - 15 October 2024

    Abstract With the emergence and development of social networks, people can stay in touch with friends, family, and colleagues more quickly and conveniently, regardless of their location. This ubiquitous digital internet environment has also led to large-scale disclosure of personal privacy. Due to the complexity and subtlety of sensitive information, traditional sensitive information identification technologies cannot thoroughly address the characteristics of each piece of data, thus weakening the deep connections between text and images. In this context, this paper adopts the CLIP model as a modality discriminator. By using comparative learning between sensitive image descriptions and… More >

  • Open Access

    ARTICLE

    Heart-Net: A Multi-Modal Deep Learning Approach for Diagnosing Cardiovascular Diseases

    Deema Mohammed Alsekait1, Ahmed Younes Shdefat2, Ayman Nabil3, Asif Nawaz4,*, Muhammad Rizwan Rashid Rana4, Zohair Ahmed5, Hanaa Fathi6, Diaa Salama AbdElminaam6,7,8

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3967-3990, 2024, DOI:10.32604/cmc.2024.054591 - 12 September 2024

    Abstract Heart disease remains a leading cause of morbidity and mortality worldwide, highlighting the need for improved diagnostic methods. Traditional diagnostics face limitations such as reliance on single-modality data and vulnerability to apparatus faults, which can reduce accuracy, especially with poor-quality images. Additionally, these methods often require significant time and expertise, making them less accessible in resource-limited settings. Emerging technologies like artificial intelligence and machine learning offer promising solutions by integrating multi-modality data and enhancing diagnostic precision, ultimately improving patient outcomes and reducing healthcare costs. This study introduces Heart-Net, a multi-modal deep learning framework designed to… More >

  • Open Access

    ARTICLE

    Enhancing Human Action Recognition with Adaptive Hybrid Deep Attentive Networks and Archerfish Optimization

    Ahmad Yahiya Ahmad Bani Ahmad1, Jafar Alzubi2, Sophers James3, Vincent Omollo Nyangaresi4,5,*, Chanthirasekaran Kutralakani6, Anguraju Krishnan7

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4791-4812, 2024, DOI:10.32604/cmc.2024.052771 - 12 September 2024

    Abstract In recent years, wearable devices-based Human Activity Recognition (HAR) models have received significant attention. Previously developed HAR models use hand-crafted features to recognize human activities, leading to the extraction of basic features. The images captured by wearable sensors contain advanced features, allowing them to be analyzed by deep learning algorithms to enhance the detection and recognition of human actions. Poor lighting and limited sensor capabilities can impact data quality, making the recognition of human actions a challenging task. The unimodal-based HAR approaches are not suitable in a real-time environment. Therefore, an updated HAR model is… More >

  • Open Access

    ARTICLE

    Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network

    Fangfang Shan1,2,*, Mengyao Liu1,2, Menghan Zhang1,2, Zhenyu Wang1,2

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1521-1542, 2024, DOI:10.32604/cmc.2024.053937 - 18 July 2024

    Abstract Social media has become increasingly significant in modern society, but it has also turned into a breeding ground for the propagation of misleading information, potentially causing a detrimental impact on public opinion and daily life. Compared to pure text content, multmodal content significantly increases the visibility and share ability of posts. This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection. To effectively address the critical challenge of accurately detecting fake news on social media, this paper proposes a fake… More >

  • Open Access

    REVIEW

    A Comprehensive Survey on Deep Learning Multi-Modal Fusion: Methods, Technologies and Applications

    Tianzhe Jiao, Chaopeng Guo, Xiaoyue Feng, Yuming Chen, Jie Song*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 1-35, 2024, DOI:10.32604/cmc.2024.053204 - 18 July 2024

    Abstract Multi-modal fusion technology gradually become a fundamental task in many fields, such as autonomous driving, smart healthcare, sentiment analysis, and human-computer interaction. It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities. Under complex scenes, multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions. However, achieving outstanding performance is challenging because of equipment performance limitations, missing information, and data noise. This paper comprehensively reviews existing methods based on multi-modal fusion techniques and completes a detailed and in-depth analysis.… More >

  • Open Access

    ARTICLE

    Improving VQA via Dual-Level Feature Embedding Network

    Yaru Song*, Huahu Xu, Dikai Fang

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 397-416, 2024, DOI:10.32604/iasc.2023.040521 - 11 July 2024

    Abstract Visual Question Answering (VQA) has sparked widespread interest as a crucial task in integrating vision and language. VQA primarily uses attention mechanisms to effectively answer questions to associate relevant visual regions with input questions. The detection-based features extracted by the object detection network aim to acquire the visual attention distribution on a predetermined detection frame and provide object-level insights to answer questions about foreground objects more effectively. However, it cannot answer the question about the background forms without detection boxes due to the lack of fine-grained details, which is the advantage of grid-based features. In… More >

  • Open Access

    ARTICLE

    Enhancing Multi-Modality Medical Imaging: A Novel Approach with Laplacian Filter + Discrete Fourier Transform Pre-Processing and Stationary Wavelet Transform Fusion

    Mian Muhammad Danyal1,2, Sarwar Shah Khan3,4,*, Rahim Shah Khan5, Saifullah Jan2, Naeem ur Rahman6

    Journal of Intelligent Medicine and Healthcare, Vol.2, pp. 35-53, 2024, DOI:10.32604/jimh.2024.051340 - 08 July 2024

    Abstract Multi-modality medical images are essential in healthcare as they provide valuable insights for disease diagnosis and treatment. To harness the complementary data provided by various modalities, these images are amalgamated to create a single, more informative image. This fusion process enhances the overall quality and comprehensiveness of the medical imagery, aiding healthcare professionals in making accurate diagnoses and informed treatment decisions. In this study, we propose a new hybrid pre-processing approach, Laplacian Filter + Discrete Fourier Transform (LF+DFT), to enhance medical images before fusion. The LF+DFT approach highlights key details, captures small information, and sharpens… More >

  • Open Access

    ARTICLE

    Fine-Grained Ship Recognition Based on Visible and Near-Infrared Multimodal Remote Sensing Images: Dataset, Methodology and Evaluation

    Shiwen Song, Rui Zhang, Min Hu*, Feiyao Huang

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 5243-5271, 2024, DOI:10.32604/cmc.2024.050879 - 20 June 2024

    Abstract Fine-grained recognition of ships based on remote sensing images is crucial to safeguarding maritime rights and interests and maintaining national security. Currently, with the emergence of massive high-resolution multi-modality images, the use of multi-modality images for fine-grained recognition has become a promising technology. Fine-grained recognition of multi-modality images imposes higher requirements on the dataset samples. The key to the problem is how to extract and fuse the complementary features of multi-modality images to obtain more discriminative fusion features. The attention mechanism helps the model to pinpoint the key information in the image, resulting in a… More >

  • Open Access

    ARTICLE

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

    Wei Wu*, Yuan Zhang, Yunpeng Li, Chuanyang Li, Yan Hao

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 537-555, 2024, DOI:10.32604/cmes.2024.049174 - 16 April 2024

    Abstract Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities. Additionally, it leverages inter-modal correlation to enhance recognition performance. Concurrently, the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features. Nevertheless, two issues persist in multi-modal feature fusion recognition: Firstly, the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities. Secondly, during modal fusion, improper weight selection diminishes the salience of crucial modal features, thereby diminishing the overall recognition performance. To address these two issues, we introduce an… More > Graphic Abstract

    A Hand Features Based Fusion Recognition Network with Enhancing Multi-Modal Correlation

Displaying 1-10 on page 1 of 26. Per Page