Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    SMSTracker: A Self-Calibration Multi-Head Self-Attention Transformer for Visual Object Tracking

    Zhongyang Wang, Hu Zhu, Feng Liu*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 605-623, 2024, DOI:10.32604/cmc.2024.050959 - 18 July 2024

    Abstract Visual object tracking plays a crucial role in computer vision. In recent years, researchers have proposed various methods to achieve high-performance object tracking. Among these, methods based on Transformers have become a research hotspot due to their ability to globally model and contextualize information. However, current Transformer-based object tracking methods still face challenges such as low tracking accuracy and the presence of redundant feature information. In this paper, we introduce self-calibration multi-head self-attention Transformer (SMSTracker) as a solution to these challenges. It employs a hybrid tensor decomposition self-organizing multi-head self-attention transformer mechanism, which not only… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223 - 20 June 2024

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    Detecting APT-Exploited Processes through Semantic Fusion and Interaction Prediction

    Bin Luo1,2,3, Liangguo Chen1,2,3, Shuhua Ruan1,2,3,*, Yonggang Luo2,3,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1731-1754, 2024, DOI:10.32604/cmc.2023.045739 - 27 February 2024

    Abstract Considering the stealthiness and persistence of Advanced Persistent Threats (APTs), system audit logs are leveraged in recent studies to construct system entity interaction provenance graphs to unveil threats in a host. Rule-based provenance graph APT detection approaches require elaborate rules and cannot detect unknown attacks, and existing learning-based approaches are limited by the lack of available APT attack samples or generally only perform graph-level anomaly detection, which requires lots of manual efforts to locate attack entities. This paper proposes an APT-exploited process detection approach called ThreatSniffer, which constructs the benign provenance graph from attack-free audit… More >

Displaying 1-10 on page 1 of 3. Per Page