Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (10)
  • Open Access

    ARTICLE

    Deep Learning Based Efficient Crowd Counting System

    Waleed Khalid Al-Ghanem1, Emad Ul Haq Qazi2,*, Muhammad Hamza Faheem2, Syed Shah Amanullah Quadri3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4001-4020, 2024, DOI:10.32604/cmc.2024.048208 - 20 June 2024

    Abstract Estimation of crowd count is becoming crucial nowadays, as it can help in security surveillance, crowd monitoring, and management for different events. It is challenging to determine the approximate crowd size from an image of the crowd’s density. Therefore in this research study, we proposed a multi-headed convolutional neural network architecture-based model for crowd counting, where we divided our proposed model into two main components: (i) the convolutional neural network, which extracts the feature across the whole image that is given to it as an input, and (ii) the multi-headed layers, which make it easier More >

  • Open Access

    ARTICLE

    Posture Detection of Heart Disease Using Multi-Head Attention Vision Hybrid (MHAVH) Model

    Hina Naz1, Zuping Zhang1,*, Mohammed Al-Habib1, Fuad A. Awwad2, Emad A. A. Ismail2, Zaid Ali Khan3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2673-2696, 2024, DOI:10.32604/cmc.2024.049186 - 15 May 2024

    Abstract Cardiovascular disease is the leading cause of death globally. This disease causes loss of heart muscles and is also responsible for the death of heart cells, sometimes damaging their functionality. A person’s life may depend on receiving timely assistance as soon as possible. Thus, minimizing the death ratio can be achieved by early detection of heart attack (HA) symptoms. In the United States alone, an estimated 610,000 people die from heart attacks each year, accounting for one in every four fatalities. However, by identifying and reporting heart attack symptoms early on, it is possible to… More >

  • Open Access

    ARTICLE

    An Intelligent Framework for Resilience Recovery of FANETs with Spatio-Temporal Aggregation and Multi-Head Attention Mechanism

    Zhijun Guo1, Yun Sun2,*, Ying Wang1, Chaoqi Fu3, Jilong Zhong4,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2375-2398, 2024, DOI:10.32604/cmc.2024.048112 - 15 May 2024

    Abstract Due to the time-varying topology and possible disturbances in a conflict environment, it is still challenging to maintain the mission performance of flying Ad hoc networks (FANET), which limits the application of Unmanned Aerial Vehicle (UAV) swarms in harsh environments. This paper proposes an intelligent framework to quickly recover the cooperative coverage mission by aggregating the historical spatio-temporal network with the attention mechanism. The mission resilience metric is introduced in conjunction with connectivity and coverage status information to simplify the optimization model. A spatio-temporal node pooling method is proposed to ensure all node location features… More >

  • Open Access

    ARTICLE

    Network Configuration Entity Extraction Method Based on Transformer with Multi-Head Attention Mechanism

    Yang Yang1, Zhenying Qu1, Zefan Yan1, Zhipeng Gao1,*, Ti Wang2

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 735-757, 2024, DOI:10.32604/cmc.2023.045807 - 30 January 2024

    Abstract Nowadays, ensuring the quality of network services has become increasingly vital. Experts are turning to knowledge graph technology, with a significant emphasis on entity extraction in the identification of device configurations. This research paper presents a novel entity extraction method that leverages a combination of active learning and attention mechanisms. Initially, an improved active learning approach is employed to select the most valuable unlabeled samples, which are subsequently submitted for expert labeling. This approach successfully addresses the problems of isolated points and sample redundancy within the network configuration sample set. Then the labeled samples are… More >

  • Open Access

    ARTICLE

    Structured Multi-Head Attention Stock Index Prediction Method Based Adaptive Public Opinion Sentiment Vector

    Cheng Zhao1, Zhe Peng2, Xuefeng Lan3, Yuefeng Cen4, Zuxin Wang5,*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 1503-1523, 2024, DOI:10.32604/cmc.2024.039232 - 30 January 2024

    Abstract The present study examines the impact of short-term public opinion sentiment on the secondary market, with a focus on the potential for such sentiment to cause dramatic stock price fluctuations and increase investment risk. The quantification of investment sentiment indicators and the persistent analysis of their impact has been a complex and significant area of research. In this paper, a structured multi-head attention stock index prediction method based adaptive public opinion sentiment vector is proposed. The proposed method utilizes an innovative approach to transform numerous investor comments on social platforms over time into public opinion… More >

  • Open Access

    ARTICLE

    Using Recurrent Neural Network Structure and Multi-Head Attention with Convolution for Fraudulent Phone Text Recognition

    Junjie Zhou, Hongkui Xu*, Zifeng Zhang, Jiangkun Lu, Wentao Guo, Zhenye Li

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2277-2297, 2023, DOI:10.32604/csse.2023.036419 - 09 February 2023

    Abstract Fraud cases have been a risk in society and people’s property security has been greatly threatened. In recent studies, many promising algorithms have been developed for social media offensive text recognition as well as sentiment analysis. These algorithms are also suitable for fraudulent phone text recognition. Compared to these tasks, the semantics of fraudulent words are more complex and more difficult to distinguish. Recurrent Neural Networks (RNN), the variants of RNN, Convolutional Neural Networks (CNN), and hybrid neural networks to extract text features are used by most text classification research. However, a single network or… More >

  • Open Access

    ARTICLE

    Discharge Summaries Based Sentiment Detection Using Multi-Head Attention and CNN-BiGRU

    Samer Abdulateef Waheeb*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 981-998, 2023, DOI:10.32604/csse.2023.035753 - 20 January 2023

    Abstract Automatic extraction of the patient’s health information from the unstructured data concerning the discharge summary remains challenging. Discharge summary related documents contain various aspects of the patient health condition to examine the quality of treatment and thereby help improve decision-making in the medical field. Using a sentiment dictionary and feature engineering, the researchers primarily mine semantic text features. However, choosing and designing features requires a lot of manpower. The proposed approach is an unsupervised deep learning model that learns a set of clusters embedded in the latent space. A composite model including Active Learning (AL),… More >

  • Open Access

    ARTICLE

    An Innovative Approach Utilizing Binary-View Transformer for Speech Recognition Task

    Muhammad Babar Kamal1, Arfat Ahmad Khan2, Faizan Ahmed Khan3, Malik Muhammad Ali Shahid4, Chitapong Wechtaisong2,*, Muhammad Daud Kamal5, Muhammad Junaid Ali6, Peerapong Uthansakul2

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5547-5562, 2022, DOI:10.32604/cmc.2022.024590 - 21 April 2022

    Abstract The deep learning advancements have greatly improved the performance of speech recognition systems, and most recent systems are based on the Recurrent Neural Network (RNN). Overall, the RNN works fine with the small sequence data, but suffers from the gradient vanishing problem in case of large sequence. The transformer networks have neutralized this issue and have shown state-of-the-art results on sequential or speech-related data. Generally, in speech recognition, the input audio is converted into an image using Mel-spectrogram to illustrate frequencies and intensities. The image is classified by the machine learning mechanism to generate a… More >

  • Open Access

    ARTICLE

    Global and Graph Encoded Local Discriminative Region Representation for Scene Recognition

    Chaowei Lin1,#, Feifei Lee1,#,*, Jiawei Cai1, Hanqing Chen1, Qiu Chen2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 985-1006, 2021, DOI:10.32604/cmes.2021.014522 - 11 August 2021

    Abstract Scene recognition is a fundamental task in computer vision, which generally includes three vital stages, namely feature extraction, feature transformation and classification. Early research mainly focuses on feature extraction, but with the rise of Convolutional Neural Networks (CNNs), more and more feature transformation methods are proposed based on CNN features. In this work, a novel feature transformation algorithm called Graph Encoded Local Discriminative Region Representation (GEDRR) is proposed to find discriminative local representations for scene images and explore the relationship between the discriminative regions. In addition, we propose a method using the multi-head attention module More >

  • Open Access

    ARTICLE

    Multi-Head Attention Graph Network for Few Shot Learning

    Baiyan Zhang1, Hefei Ling1,*, Ping Li1, Qian Wang1, Yuxuan Shi1, Lei Wu1, Runsheng Wang1, Jialie Shen2

    CMC-Computers, Materials & Continua, Vol.68, No.2, pp. 1505-1517, 2021, DOI:10.32604/cmc.2021.016851 - 13 April 2021

    Abstract The majority of existing graph-network-based few-shot models focus on a node-similarity update mode. The lack of adequate information intensifies the risk of overtraining. In this paper, we propose a novel Multi-head Attention Graph Network to excavate discriminative relation and fulfill effective information propagation. For edge update, the node-level attention is used to evaluate the similarities between the two nodes and the distribution-level attention extracts more in-deep global relation. The cooperation between those two parts provides a discriminative and comprehensive expression for edge feature. For node update, we embrace the label-level attention to soften the noise More >

Displaying 1-10 on page 1 of 10. Per Page