Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Situational Awareness Method for Initial Insulation Fault of Distribution Network Based on Multi-Feature Index Comprehensive Evaluation

    Hao Bai1, Beiyuan Liu2,*, Hongwen Liu3, Jupeng Zeng2, Jian Ouyang4, Yipeng Liu1

    Energy Engineering, Vol.121, No.8, pp. 2191-2211, 2024, DOI:10.32604/ee.2024.049848 - 19 July 2024

    Abstract Most ground faults in distribution network are caused by insulation deterioration of power equipment. It is difficult to find the insulation deterioration of the distribution network in time, and the development trend of the initial insulation fault is unknown, which brings difficulties to the distribution inspection. In order to solve the above problems, a situational awareness method of the initial insulation fault of the distribution network based on a multi-feature index comprehensive evaluation is proposed. Firstly, the insulation situation evaluation index is selected by analyzing the insulation fault mechanism of the distribution network, and the… More >

  • Open Access

    ARTICLE

    Color Image Segmentation Using Soft Rough Fuzzy-C-Means and Local Binary Pattern

    R.V.V. Krishna1,*, S. Srinivas Kumar2

    Intelligent Automation & Soft Computing, Vol.26, No.2, pp. 281-290, 2020, DOI:10.31209/2019.100000121

    Abstract In this paper, a color image segmentation algorithm is proposed by extracting both texture and color features and applying them to the one -against-all multi class support vector machine (MSVM) classifier for segmentation. Local Binary Pattern is used for extracting the textural features and L*a*b color model is used for obtaining the color features. The MSVM is trained using the samples obtained from a novel soft rough fuzzy c-means (SRFCM) clustering. The fuzzy set based membership functions capably handle the problem of overlapping clusters. The lower and upper approximation concepts of rough sets deal well More >

Displaying 1-10 on page 1 of 2. Per Page