Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    PROCEEDINGS

    Bending Collapse of Easily Fabricated Single- and Multi-Cell Arched Beams

    Xiong Zhang1,2,*, Jinkang Xiong1, Xinrong Fu1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011760

    Abstract Thin-walled beams are widely applied as energy-absorbing components in industrial products to meet the requirements of passive safety. Researchers have tried various approaches to improve the energy absorption efficiency of them. Recently, adopting arched beams was proposed by researchers to improve the crashworthiness of beams under transverse loads. Arched beams can switch the transverse forces to axial forces and were reported to show very much better crashworthiness performances than straight beams.
    Although adopting arched beams is an effective way to improve the performance of beams under transverse loads, the fabrication of arched beams is more… More >

  • Open Access

    PROCEEDINGS

    Theoretical Study on the Bending Collapse of Multi-Cell Thin-Walled Rectangular Beams

    Xinrong Fu1, Xiong Zhang1,2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011748

    Abstract Thin-walled beams with various cross-sectional shapes were widely applied in automobiles or other large-volume industrial products. Researchers have tried different methods to improve their crashworthiness performances and predict the collapse responses of the beams under various loads. Multi-cell thin-walled beams were reported to show excellent energy absorption efficiency and crashworthiness performances under many load conditions. Up to now, theoretical analyses on the axial crushing of multi-cell beams have attracted extensive attentions, and significant progress has been made in predicting the energy absorption of multi-cell beams with various sections. However, the theoretical analysis on the bending… More >

  • Open Access

    ARTICLE

    Classification of Human Protein in Multiple Cells Microscopy Images Using CNN

    Lina Al-joudi, Muhammad Arif*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1763-1780, 2023, DOI:10.32604/cmc.2023.039413 - 30 August 2023

    Abstract The subcellular localization of human proteins is vital for understanding the structure of human cells. Proteins play a significant role within human cells, as many different groups of proteins are located in a specific location to perform a particular function. Understanding these functions will help in discovering many diseases and developing their treatments. The importance of imaging analysis techniques, specifically in proteomics research, is becoming more prevalent. Despite recent advances in deep learning techniques for analyzing microscopy images, classification models have faced critical challenges in achieving high performance. Most protein subcellular images have a significant… More >

  • Open Access

    ARTICLE

    Design and Analysis of Cascaded Hybrid-Bridge Multi-Cell Multilevel Inverter with Reduced Total Harmonic Distortion Profile

    Bulbul Sharma1,*, N. Karthick1, Durgesh Prasad Bagarty2

    Energy Engineering, Vol.119, No.6, pp. 2585-2605, 2022, DOI:10.32604/ee.2022.021465 - 14 September 2022

    Abstract This multilevel inverter methodology is the center of focus among researchers in recent era. It has been focused due to its advantages over existing topologies, drawbacks and improvement of power quality, Multi-level inverter has the ability to generate nearly sinusoidal waves. This sinusoidal wave can be further improved by increasing the level of output voltage or with the help of filter design, and this manuscript presents single-phase Multi cell Multi-Level Inverter (MLI). It has been considered for reducing component count to get a higher number of output voltage levels and lower Total harmonics distortion profile.… More >

  • Open Access

    ARTICLE

    Optimization Design of an Embedded Multi-Cell Thin-Walled Energy Absorption Structures with Local Surface Nanocrystallization

    Kang Xu, Tong Li, Gaofei Guan, Jianlong Qu, Zhen Zhao, Xinsheng Xu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 987-1002, 2022, DOI:10.32604/cmes.2022.018128 - 13 December 2021

    Abstract By means of the local surface nanocrystallization that enables to change the material on local positions, an innovative embedded multi-cell (EMC) thin-walled energy absorption structures with local surface nanocrystallization is proposed in this paper. The local surface nanacrystallization stripes are regarded as the moving morphable components in the domain for optimal design. Results reveal that after optimizing the local surface nanocrystallization layout, the specific energy absorption (SEA) is increased by 50.78% compared with the untreated counterpart. Besides, in contrast with the optimized 4-cell structure, the SEA of the nanocrystallized embedded 9-cell structure is further enhanced More >

  • Open Access

    ARTICLE

    Geometrical Modeling of Cell Division and Cell Remodeling Based on Voronoi Tessellation Method

    Liqiang Lin1, Xianqiao Wang2, Xiaowei Zeng1,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.98, No.2, pp. 203-220, 2014, DOI:10.3970/cmes.2014.098.203

    Abstract The Voronoi tessellation is employed to describe cellular patterns and to simulate cell division and cell remodeling in epithelial tissue. First, Halton sequence is utilized to generate the random generators of Voronoi cell points. The centroidal Voronoi cell center is obtained by probabilistic Lloyd's method and polygonal structure of cell distribution is modeled. Based on the polygonal shape of cells, the instantaneous mechanism of cell division is applied to simulate the cell proliferation and remodeling. Four kinds of single-cell division algorithms are designed with the consideration of cleavage angle. From these simulations, we find that… More >

Displaying 1-10 on page 1 of 6. Per Page