Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    A Fault Location Method of Multi-Branch Distribution Line Based on MODWT Combined with Improved TEO

    Pan Duan*, Enze Peng

    Energy Engineering, Vol.122, No.9, pp. 3817-3838, 2025, DOI:10.32604/ee.2025.066491 - 26 August 2025

    Abstract To address the challenges of fault line identification and low detection accuracy of wave head in Fault Location (FL) research of distribution networks with complex topologies, this paper proposes an FL method of Multi-Branch distribution line based on Maximal Overlap Discrete Wavelet Transform (MODWT) combined with the improved Teager Energy Operator (TEO). Firstly, the current and voltage Traveling Wave (TW) signals at the head of each line are extracted, and the fault-induced components are obtained to determine the fault line by analyzing the polarity of the mutation amount of fault voltage and current TWs. Subsequently,… More >

  • Open Access

    ARTICLE

    FS-MSFormer: Image Dehazing Based on Frequency Selection and Multi-Branch Efficient Transformer

    Chunming Tang*, Yu Wang

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5115-5128, 2025, DOI:10.32604/cmc.2025.062328 - 19 May 2025

    Abstract Image dehazing aims to generate clear images critical for subsequent visual tasks. CNNs have made significant progress in the field of image dehazing. However, due to the inherent limitations of convolution operations, it is challenging to effectively model global context and long-range spatial dependencies effectively. Although the Transformer can address this issue, it faces the challenge of excessive computational requirements. Therefore, we propose the FS-MSFormer network, an asymmetric encoder-decoder architecture that combines the advantages of CNNs and Transformers to improve dehazing performance. Specifically, the encoding process employs two branches for multi-scale feature extraction. One branch… More >

  • Open Access

    ARTICLE

    Automatic Pancreas Segmentation in CT Images Using EfficientNetV2 and Multi-Branch Structure

    Panru Liang1, Guojiang Xin1,*, Xiaolei Yi2, Hao Liang3, Changsong Ding1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2481-2504, 2025, DOI:10.32604/cmc.2025.060961 - 16 April 2025

    Abstract Automatic pancreas segmentation plays a pivotal role in assisting physicians with diagnosing pancreatic diseases, facilitating treatment evaluations, and designing surgical plans. Due to the pancreas’s tiny size, significant variability in shape and location, and low contrast with surrounding tissues, achieving high segmentation accuracy remains challenging. To improve segmentation precision, we propose a novel network utilizing EfficientNetV2 and multi-branch structures for automatically segmenting the pancreas from CT images. Firstly, an EfficientNetV2 encoder is employed to extract complex and multi-level features, enhancing the model’s ability to capture the pancreas’s intricate morphology. Then, a residual multi-branch dilated attention… More >

  • Open Access

    ARTICLE

    MCIF-Transformer Mask RCNN: Multi-Branch Cross-Scale Interactive Feature Fusion Transformer Model for PET/CT Lung Tumor Instance Segmentation

    Huiling Lu1,*, Tao Zhou2,3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4371-4393, 2024, DOI:10.32604/cmc.2024.047827 - 20 June 2024

    Abstract The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis. However, in PET/CT (Positron Emission Tomography/Computed Tomography) lung images, the lesion shapes are complex, the edges are blurred, and the sample numbers are unbalanced. To solve these problems, this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model (MCIF-Transformer Mask RCNN) for PET/CT lung tumor instance segmentation, The main innovative works of this paper are as follows: Firstly, the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images. The pixel dependence relationship… More >

  • Open Access

    ARTICLE

    Lightweight Res-Connection Multi-Branch Network for Highly Accurate Crowd Counting and Localization

    Mingze Li, Diwen Zheng, Shuhua Lu*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2105-2122, 2024, DOI:10.32604/cmc.2024.048928 - 15 May 2024

    Abstract Crowd counting is a promising hotspot of computer vision involving crowd intelligence analysis, achieving tremendous success recently with the development of deep learning. However, there have been still many challenges including crowd multi-scale variations and high network complexity, etc. To tackle these issues, a lightweight Res-connection multi-branch network (LRMBNet) for highly accurate crowd counting and localization is proposed. Specifically, using improved ShuffleNet V2 as the backbone, a lightweight shallow extractor has been designed by employing the channel compression mechanism to reduce enormously the number of network parameters. A light multi-branch structure with different expansion rate… More >

  • Open Access

    ARTICLE

    Multi-Branch High-Dimensional Guided Transformer-Based 3D Human Posture Estimation

    Xianhua Li1,2,*, Haohao Yu1, Shuoyu Tian1, Fengtao Lin3, Usama Masood1

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3551-3564, 2024, DOI:10.32604/cmc.2024.047336 - 26 March 2024

    Abstract The human pose paradigm is estimated using a transformer-based multi-branch multidimensional directed the three-dimensional (3D) method that takes into account self-occlusion, badly posedness, and a lack of depth data in the per-frame 3D posture estimation from two-dimensional (2D) mapping to 3D mapping. Firstly, by examining the relationship between the movements of different bones in the human body, four virtual skeletons are proposed to enhance the cyclic constraints of limb joints. Then, multiple parameters describing the skeleton are fused and projected into a high-dimensional space. Utilizing a multi-branch network, motion features between bones and overall motion More >

  • Open Access

    ARTICLE

    Multi-Branch Fault Line Location Method Based on Time Difference Matrix Fitting

    Hua Leng1, Silin He2, Jian Qiu3, Feng Liu4,*, Xinfei Huang4, Jiran Zhu2

    Energy Engineering, Vol.121, No.1, pp. 77-94, 2024, DOI:10.32604/ee.2023.028340 - 27 December 2023

    Abstract The distribution network exhibits complex structural characteristics, which makes fault localization a challenging task. Especially when a branch of the multi-branch distribution network fails, the traditional multi-branch fault location algorithm makes it difficult to meet the demands of high-precision fault localization in the multi-branch distribution network system. In this paper, the multi-branch mainline is decomposed into single branch lines, transforming the complex multi-branch fault location problem into a double-ended fault location problem. Based on the different transmission characteristics of the fault-traveling wave in fault lines and non-fault lines, the endpoint reference time difference matrix S… More >

  • Open Access

    ARTICLE

    Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features

    Wenkai Qin1, Tianliang Lu1,*, Lu Zhang2, Shufan Peng1, Da Wan1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 467-490, 2023, DOI:10.32604/cmc.2023.042417 - 31 October 2023

    Abstract With the rapid development of deepfake technology, the authenticity of various types of fake synthetic content is increasing rapidly, which brings potential security threats to people's daily life and social stability. Currently, most algorithms define deepfake detection as a binary classification problem, i.e., global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false. However, the differences between real and fake samples are often subtle and local, and such global feature-based detection algorithms are not optimal in efficiency and accuracy. To this end, to enhance… More >

  • Open Access

    ARTICLE

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

    Shuai Zhang, Liguo Weng*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2635-2654, 2023, DOI:10.32604/cmes.2023.025405 - 09 March 2023

    Abstract Transmission line (TL) Parameter Identification (PI) method plays an essential role in the transmission system. The existing PI methods usually have two limitations: (1) These methods only model for single TL, and can not consider the topology connection of multiple branches for simultaneous identification. (2) Transient bad data is ignored by methods, and the random selection of terminal section data may cause the distortion of PI and have serious consequences. Therefore, a multi-task PI model considering multiple TLs’ spatial constraints and massive electrical section data is proposed in this paper. The Graph Attention Network module More > Graphic Abstract

    STPGTN–A Multi-Branch Parameters Identification Method Considering Spatial Constraints and Transient Measurement Data

Displaying 1-10 on page 1 of 9. Per Page