Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    MAQMC: Multi-Agent Deep Q-Network for Multi-Zone Residential HVAC Control

    Zhengkai Ding1,2, Qiming Fu1,2,*, Jianping Chen2,3,4,*, You Lu1,2, Hongjie Wu1, Nengwei Fang4, Bin Xing4

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2759-2785, 2023, DOI:10.32604/cmes.2023.026091 - 09 March 2023

    Abstract The optimization of multi-zone residential heating, ventilation, and air conditioning (HVAC) control is not an easy task due to its complex dynamic thermal model and the uncertainty of occupant-driven cooling loads. Deep reinforcement learning (DRL) methods have recently been proposed to address the HVAC control problem. However, the application of single-agent DRL for multi-zone residential HVAC control may lead to non-convergence or slow convergence. In this paper, we propose MAQMC (Multi-Agent deep Q-network for multi-zone residential HVAC Control) to address this challenge with the goal of minimizing energy consumption while maintaining occupants’ thermal comfort. MAQMC… More >

  • Open Access

    ARTICLE

    Multi-Agent Deep Q-Networks for Efficient Edge Federated Learning Communications in Software-Defined IoT

    Prohim Tam1, Sa Math1, Ahyoung Lee2, Seokhoon Kim1,3,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3319-3335, 2022, DOI:10.32604/cmc.2022.023215 - 07 December 2021

    Abstract Federated learning (FL) activates distributed on-device computation techniques to model a better algorithm performance with the interaction of local model updates and global model distributions in aggregation averaging processes. However, in large-scale heterogeneous Internet of Things (IoT) cellular networks, massive multi-dimensional model update iterations and resource-constrained computation are challenging aspects to be tackled significantly. This paper introduces the system model of converging software-defined networking (SDN) and network functions virtualization (NFV) to enable device/resource abstractions and provide NFV-enabled edge FL (eFL) aggregation servers for advancing automation and controllability. Multi-agent deep Q-networks (MADQNs) target to enforce a… More >

  • Open Access

    ARTICLE

    Deep Reinforcement Learning for Addressing Disruptions in Traffic Light Control

    Faizan Rasheed1, Kok-Lim Alvin Yau2, Rafidah Md Noor3, Yung-Wey Chong4,*

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 2225-2247, 2022, DOI:10.32604/cmc.2022.022952 - 07 December 2021

    Abstract This paper investigates the use of multi-agent deep Q-network (MADQN) to address the curse of dimensionality issue occurred in the traditional multi-agent reinforcement learning (MARL) approach. The proposed MADQN is applied to traffic light controllers at multiple intersections with busy traffic and traffic disruptions, particularly rainfall. MADQN is based on deep Q-network (DQN), which is an integration of the traditional reinforcement learning (RL) and the newly emerging deep learning (DL) approaches. MADQN enables traffic light controllers to learn, exchange knowledge with neighboring agents, and select optimal joint actions in a collaborative manner. A case study More >

Displaying 1-10 on page 1 of 3. Per Page