Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (51)
  • Open Access

    ARTICLE

    Research on Maneuver Decision-Making of Multi-Agent Adversarial Game in a Random Interference Environment

    Shiguang Hu1,2, Le Ru1,2,*, Bo Lu1,2, Zhenhua Wang3, Xiaolin Zhao1,2, Wenfei Wang1,2, Hailong Xi1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1879-1903, 2024, DOI:10.32604/cmc.2024.056110 - 15 October 2024

    Abstract The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances. This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment. It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players, as well as the impact of participants’ manipulative behaviors on the state changes of the players. A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario. Subsequently, the… More >

  • Open Access

    ARTICLE

    A Task Offloading Strategy Based on Multi-Agent Deep Reinforcement Learning for Offshore Wind Farm Scenarios

    Zeshuang Song1, Xiao Wang1,*, Qing Wu1, Yanting Tao1, Linghua Xu1, Yaohua Yin2, Jianguo Yan3

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 985-1008, 2024, DOI:10.32604/cmc.2024.055614 - 15 October 2024

    Abstract This research is the first application of Unmanned Aerial Vehicles (UAVs) equipped with Multi-access Edge Computing (MEC) servers to offshore wind farms, providing a new task offloading solution to address the challenge of scarce edge servers in offshore wind farms. The proposed strategy is to offload the computational tasks in this scenario to other MEC servers and compute them proportionally, which effectively reduces the computational pressure on local MEC servers when wind turbine data are abnormal. Finally, the task offloading problem is modeled as a multi-intelligent deep reinforcement learning problem, and a task offloading model… More >

  • Open Access

    ARTICLE

    Development of Multi-Agent-Based Indoor 3D Reconstruction

    Hoi Chuen Cheng, Frederick Ziyang Hong, Babar Hussain, Yiru Wang, Chik Patrick Yue*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 161-181, 2024, DOI:10.32604/cmc.2024.053079 - 15 October 2024

    Abstract Large-scale indoor 3D reconstruction with multiple robots faces challenges in core enabling technologies. This work contributes to a framework addressing localization, coordination, and vision processing for multi-agent reconstruction. A system architecture fusing visible light positioning, multi-agent path finding via reinforcement learning, and 360° camera techniques for 3D reconstruction is proposed. Our visible light positioning algorithm leverages existing lighting for centimeter-level localization without additional infrastructure. Meanwhile, a decentralized reinforcement learning approach is developed to solve the multi-agent path finding problem, with communications among agents optimized. Our 3D reconstruction pipeline utilizes equirectangular projection from 360° cameras to More >

  • Open Access

    ARTICLE

    Service Function Chain Deployment Algorithm Based on Multi-Agent Deep Reinforcement Learning

    Wanwei Huang1,*, Qiancheng Zhang1, Tao Liu2, Yaoli Xu1, Dalei Zhang3

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4875-4893, 2024, DOI:10.32604/cmc.2024.055622 - 12 September 2024

    Abstract Aiming at the rapid growth of network services, which leads to the problems of long service request processing time and high deployment cost in the deployment of network function virtualization service function chain (SFC) under 5G networks, this paper proposes a multi-agent deep deterministic policy gradient optimization algorithm for SFC deployment (MADDPG-SD). Initially, an optimization model is devised to enhance the request acceptance rate, minimizing the latency and deploying the cost SFC is constructed for the network resource-constrained case. Subsequently, we model the dynamic problem as a Markov decision process (MDP), facilitating adaptation to the… More >

  • Open Access

    ARTICLE

    Unleashing the Power of Multi-Agent Reinforcement Learning for Algorithmic Trading in the Digital Financial Frontier and Enterprise Information Systems

    Saket Sarin1, Sunil K. Singh1, Sudhakar Kumar1, Shivam Goyal1, Brij Bhooshan Gupta2,3,4,8,*, Wadee Alhalabi5, Varsha Arya6,7

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3123-3138, 2024, DOI:10.32604/cmc.2024.051599 - 15 August 2024

    Abstract In the rapidly evolving landscape of today’s digital economy, Financial Technology (Fintech) emerges as a transformative force, propelled by the dynamic synergy between Artificial Intelligence (AI) and Algorithmic Trading. Our in-depth investigation delves into the intricacies of merging Multi-Agent Reinforcement Learning (MARL) and Explainable AI (XAI) within Fintech, aiming to refine Algorithmic Trading strategies. Through meticulous examination, we uncover the nuanced interactions of AI-driven agents as they collaborate and compete within the financial realm, employing sophisticated deep learning techniques to enhance the clarity and adaptability of trading decisions. These AI-infused Fintech platforms harness collective intelligence More >

  • Open Access

    ARTICLE

    MADDPG-D2: An Intelligent Dynamic Task Allocation Algorithm Based on Multi-Agent Architecture Driven by Prior Knowledge

    Tengda Li, Gang Wang, Qiang Fu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2559-2586, 2024, DOI:10.32604/cmes.2024.052039 - 08 July 2024

    Abstract Aiming at the problems of low solution accuracy and high decision pressure when facing large-scale dynamic task allocation (DTA) and high-dimensional decision space with single agent, this paper combines the deep reinforcement learning (DRL) theory and an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG-D2) algorithm with a dual experience replay pool and a dual noise based on multi-agent architecture is proposed to improve the efficiency of DTA. The algorithm is based on the traditional Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm, and considers the introduction of a double noise mechanism to increase the action exploration… More >

  • Open Access

    ARTICLE

    CoopAI-Route: DRL Empowered Multi-Agent Cooperative System for Efficient QoS-Aware Routing for Network Slicing in Multi-Domain SDN

    Meignanamoorthi Dhandapani*, V. Vetriselvi, R. Aishwarya

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2449-2486, 2024, DOI:10.32604/cmes.2024.050986 - 08 July 2024

    Abstract The emergence of beyond 5G networks has the potential for seamless and intelligent connectivity on a global scale. Network slicing is crucial in delivering services for different, demanding vertical applications in this context. Next-generation applications have time-sensitive requirements and depend on the most efficient routing path to ensure packets reach their intended destinations. However, the existing IP (Internet Protocol) over a multi-domain network faces challenges in enforcing network slicing due to minimal collaboration and information sharing among network operators. Conventional inter-domain routing methods, like Border Gateway Protocol (BGP), cannot make routing decisions based on performance,… More >

  • Open Access

    ARTICLE

    Optimal Design of Drying Process of the Potatoes with Multi-Agent Reinforced Deep Learning

    Mohammad Yaghoub Abdollahzadeh Jamalabadi*

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 511-536, 2024, DOI:10.32604/fhmt.2024.051004 - 20 May 2024

    Abstract Heat and mass transport through evaporation or drying processes occur in many applications such as food processing, pharmaceutical products, solar-driven vapor generation, textile design, and electronic cigarettes. In this paper, the transport of water from a fresh potato considered as a wet porous media with laminar convective dry air fluid flow governed by Darcy’s law in two-dimensional is highlighted. Governing equations of mass conservation, momentum conservation, multiphase fluid flow in porous media, heat transfer, and transport of participating fluids and gases through evaporation from liquid to gaseous phase are solved simultaneously. In this model, the… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Multi-Agent Reinforcement Learning Algorithms

    Abdulghani M. Abdulghani, Mokhles M. Abdulghani, Wilbur L. Walters, Khalid H. Abed*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 337-352, 2024, DOI:10.32604/iasc.2024.047017 - 21 May 2024

    Abstract Multi-Agent Reinforcement Learning (MARL) has proven to be successful in cooperative assignments. MARL is used to investigate how autonomous agents with the same interests can connect and act in one team. MARL cooperation scenarios are explored in recreational cooperative augmented reality environments, as well as real-world scenarios in robotics. In this paper, we explore the realm of MARL and its potential applications in cooperative assignments. Our focus is on developing a multi-agent system that can collaborate to attack or defend against enemies and achieve victory with minimal damage. To accomplish this, we utilize the StarCraft… More >

  • Open Access

    ARTICLE

    Safety-Constrained Multi-Agent Reinforcement Learning for Power Quality Control in Distributed Renewable Energy Networks

    Yongjiang Zhao, Haoyi Zhong, Chang Cyoon Lim*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 449-471, 2024, DOI:10.32604/cmc.2024.048771 - 25 April 2024

    Abstract This paper examines the difficulties of managing distributed power systems, notably due to the increasing use of renewable energy sources, and focuses on voltage control challenges exacerbated by their variable nature in modern power grids. To tackle the unique challenges of voltage control in distributed renewable energy networks, researchers are increasingly turning towards multi-agent reinforcement learning (MARL). However, MARL raises safety concerns due to the unpredictability in agent actions during their exploration phase. This unpredictability can lead to unsafe control measures. To mitigate these safety concerns in MARL-based voltage control, our study introduces a novel… More >

Displaying 1-10 on page 1 of 51. Per Page