Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Exploring Motor Imagery EEG: Enhanced EEG Microstate Analysis with GMD-Driven Density Canopy Method

    Xin Xiong1, Jing Zhang1, Sanli Yi1, Chunwu Wang2, Ruixiang Liu3, Jianfeng He1,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4659-4681, 2024, DOI:10.32604/cmc.2024.050528

    Abstract The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity. Traditional methods such as Atomic Agglomerative Hierarchical Clustering (AAHC), K-means clustering, Principal Component Analysis (PCA), and Independent Component Analysis (ICA) are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction. Tackling these limitations, this study introduces a Global Map Dissimilarity (GMD)-driven density canopy K-means clustering algorithm. This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for… More >

  • Open Access

    ARTICLE

    Enhanced Accuracy for Motor Imagery Detection Using Deep Learning for BCI

    Ayesha Sarwar1, Kashif Javed1, Muhammad Jawad Khan1, Saddaf Rubab1, Oh-Young Song2,*, Usman Tariq3

    CMC-Computers, Materials & Continua, Vol.68, No.3, pp. 3825-3840, 2021, DOI:10.32604/cmc.2021.016893

    Abstract Brain-Computer Interface (BCI) is a system that provides a link between the brain of humans and the hardware directly. The recorded brain data is converted directly to the machine that can be used to control external devices. There are four major components of the BCI system: acquiring signals, preprocessing of acquired signals, features extraction, and classification. In traditional machine learning algorithms, the accuracy is insignificant and not up to the mark for the classification of multi-class motor imagery data. The major reason for this is, features are selected manually, and we are not able to More >

  • Open Access

    ARTICLE

    A Survey on Machine Learning Algorithms in Little-Labeled Data for Motor Imagery-Based Brain-Computer Interfaces

    Yuxi Jia1, Feng Li1,2, Fei Wang1,2,*, Yan Gui1,2,3

    Journal of Information Hiding and Privacy Protection, Vol.1, No.1, pp. 11-21, 2019, DOI:10.32604/jihpp.2019.05979

    Abstract The Brain-Computer Interfaces (BCIs) had been proposed and used in therapeutics for decades. However, the need of time-consuming calibration phase and the lack of robustness, which are caused by little-labeled data, are restricting the advance and application of BCI, especially for the BCI based on motor imagery (MI). In this paper, we reviewed the recent development in the machine learning algorithm used in the MI-based BCI, which may provide potential solutions for addressing the issue. We classified these algorithms into two categories, namely, and enhancing the representation and expanding the training set. Specifically, these methods More >

Displaying 1-10 on page 1 of 3. Per Page