Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903 - 20 June 2024

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

  • Open Access

    ARTICLE

    Deer Hunting Optimization with Deep Learning Enabled Emotion Classification on English Twitter Data

    Abdelwahed Motwakel1,*, Hala J. Alshahrani2, Jaber S. Alzahrani3, Ayman Yafoz4, Heba Mohsen5, Ishfaq Yaseen1, Amgad Atta Abdelmageed1, Mohamed I. Eldesouki6

    Computer Systems Science and Engineering, Vol.47, No.3, pp. 2741-2757, 2023, DOI:10.32604/csse.2023.034721 - 09 November 2023

    Abstract Currently, individuals use online social media, namely Facebook or Twitter, for sharing their thoughts and emotions. Detection of emotions on social networking sites’ finds useful in several applications in social welfare, commerce, public health, and so on. Emotion is expressed in several means, like facial and speech expressions, gestures, and written text. Emotion recognition in a text document is a content-based classification problem that includes notions from deep learning (DL) and natural language processing (NLP) domains. This article proposes a Deer Hunting Optimization with Deep Belief Network Enabled Emotion Classification (DHODBN-EC) on English Twitter Data… More >

  • Open Access

    ARTICLE

    Parameter Tuned Machine Learning Based Emotion Recognition on Arabic Twitter Data

    Ibrahim M. Alwayle1, Badriyya B. Al-onazi2, Jaber S. Alzahrani3, Khaled M. Alalayah1, Khadija M. Alaidarous1, Ibrahim Abdulrab Ahmed4, Mahmoud Othman5, Abdelwahed Motwakel6,*

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3423-3438, 2023, DOI:10.32604/csse.2023.033834 - 03 April 2023

    Abstract Arabic is one of the most spoken languages across the globe. However, there are fewer studies concerning Sentiment Analysis (SA) in Arabic. In recent years, the detected sentiments and emotions expressed in tweets have received significant interest. The substantial role played by the Arab region in international politics and the global economy has urged the need to examine the sentiments and emotions in the Arabic language. Two common models are available: Machine Learning and lexicon-based approaches to address emotion classification problems. With this motivation, the current research article develops a Teaching and Learning Optimization with… More >

  • Open Access

    ARTICLE

    Image Emotion Classification Network Based on Multilayer Attentional Interaction, Adaptive Feature Aggregation

    Xiaorui Zhang1,2,3,*, Chunlin Yuan1, Wei Sun3,4, Sunil Kumar Jha5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4273-4291, 2023, DOI:10.32604/cmc.2023.036975 - 31 March 2023

    Abstract The image emotion classification task aims to use the model to automatically predict the emotional response of people when they see the image. Studies have shown that certain local regions are more likely to inspire an emotional response than the whole image. However, existing methods perform poorly in predicting the details of emotional regions and are prone to overfitting during training due to the small size of the dataset. Therefore, this study proposes an image emotion classification network based on multilayer attentional interaction and adaptive feature aggregation. To perform more accurate emotional region prediction, this… More >

  • Open Access

    ARTICLE

    Multi-label Emotion Classification of COVID–19 Tweets with Deep Learning and Topic Modelling

    K. Anuratha1,*, M. Parvathy2

    Computer Systems Science and Engineering, Vol.45, No.3, pp. 3005-3021, 2023, DOI:10.32604/csse.2023.031553 - 21 December 2022

    Abstract The COVID-19 pandemic has become one of the severe diseases in recent years. As it majorly affects the common livelihood of people across the universe, it is essential for administrators and healthcare professionals to be aware of the views of the community so as to monitor the severity of the spread of the outbreak. The public opinions are been shared enormously in microblogging media like twitter and is considered as one of the popular sources to collect public opinions in any topic like politics, sports, entertainment etc., This work presents a combination of Intensity Based… More >

  • Open Access

    ARTICLE

    A BPR-CNN Based Hand Motion Classifier Using Electric Field Sensors

    Hunmin Lee1, Inseop Na2, Kamoliddin Bultakov3, Youngchul Kim3,*

    CMC-Computers, Materials & Continua, Vol.71, No.3, pp. 5413-5425, 2022, DOI:10.32604/cmc.2022.023172 - 14 January 2022

    Abstract In this paper, we propose a BPR-CNN (Biometric Pattern Recognition-Convolution Neural Network) classifier for hand motion classification as well as a dynamic threshold algorithm for motion signal detection and extraction by EF (Electric Field) sensors. Currently, an EF sensor or EPS (Electric Potential Sensor) system is attracting attention as a next-generation motion sensing technology due to low computation and price, high sensitivity and recognition speed compared to other sensor systems. However, it remains as a challenging problem to accurately detect and locate the authentic motion signal frame automatically in real-time when sensing body-motions such as… More >

  • Open Access

    ARTICLE

    An Optimized Deep Learning Model for Emotion Classification in Tweets

    Chinu Singla1, Fahd N. Al-Wesabi2,3, Yash Singh Pathania1, Badria Sulaiman Alfurhood4, Anwer Mustafa Hilal5,*, Mohammed Rizwanullah5, Manar Ahmed Hamza5, Mohammad Mahzari6

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 6365-6380, 2022, DOI:10.32604/cmc.2022.020480 - 11 October 2021

    Abstract The task of automatically analyzing sentiments from a tweet has more use now than ever due to the spectrum of emotions expressed from national leaders to the average man. Analyzing this data can be critical for any organization. Sentiments are often expressed with different intensity and topics which can provide great insight into how something affects society. Sentiment analysis in Twitter mitigates the various issues of analyzing the tweets in terms of views expressed and several approaches have already been proposed for sentiment analysis in twitter. Resources used for analyzing tweet emotions are also briefly… More >

  • Open Access

    ARTICLE

    CNN-Based Voice Emotion Classification Model for Risk Detection

    Hyun Yoo1, Ji-Won Baek2, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.29, No.2, pp. 319-334, 2021, DOI:10.32604/iasc.2021.018115 - 16 June 2021

    Abstract With the convergence and development of the Internet of things (IoT) and artificial intelligence, closed-circuit television, wearable devices, and artificial neural networks have been combined and applied to crime prevention and follow-up measures against crimes. However, these IoT devices have various limitations based on the physical environment and face the fundamental problem of privacy violations. In this study, voice data are collected and emotions are classified based on an acoustic sensor that is free of privacy violations and is not sensitive to changes in external environments, to overcome these limitations. For the classification of emotions… More >

  • Open Access

    ARTICLE

    Performance Evaluation of Supervised Machine Learning Techniques for Efficient Detection of Emotions from Online Content

    Muhammad Zubair Asghar1, Fazli Subhan2, Muhammad Imran1, Fazal Masud Kundi1, Adil Khan3, Shahboddin Shamshirband4, 5, *, Amir Mosavi6, 7, 8, Peter Csiba8, Annamaria R. Varkonyi Koczy8

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1093-1118, 2020, DOI:10.32604/cmc.2020.07709 - 30 April 2020

    Abstract Emotion detection from the text is a challenging problem in the text analytics. The opinion mining experts are focusing on the development of emotion detection applications as they have received considerable attention of online community including users and business organization for collecting and interpreting public emotions. However, most of the existing works on emotion detection used less efficient machine learning classifiers with limited datasets, resulting in performance degradation. To overcome this issue, this work aims at the evaluation of the performance of different machine learning classifiers on a benchmark emotion dataset. The experimental results show More >

Displaying 1-10 on page 1 of 9. Per Page