Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (385)
  • Open Access

    ARTICLE

    Spatio-Temporal Monitoring and Assessment of Groundwater Quality for Domestic and Agricultural Use in Kurukshetra District, Haryana, India

    Aakash Deep*, Sushil Kumar, Bhagwan Singh Chaudhary

    Revue Internationale de Géomatique, Vol.35, pp. 79-100, 2026, DOI:10.32604/rig.2026.074969 - 05 February 2026

    Abstract The assessment of groundwater quality is crucial for ensuring its safe and sustainable use for domestic and agricultural purposes. The Kurukshetra district in the Indian state of Haryana relies heavily on groundwater to meet household and agricultural needs. Sustainable groundwater management must be assessed in terms of suitability for domestic and agricultural needs in a region. The current study analyzed pre-monsoon geochemical data from groundwater samples in the study area for 1991, 2000, 2010, and 2020. A Geographic Information System (GIS) was used to create spatial distribution maps for hydrogen ion concentration, total hardness, total… More >

  • Open Access

    ARTICLE

    Neuro-Symbolic Graph Learning for Causal Inference and Continual Learning in Mental-Health Risk Assessment

    Monalisa Jena1, Noman Khan2,*, Mi Young Lee3,*, Seungmin Rho3

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075119 - 29 January 2026

    Abstract Mental-health risk detection seeks early signs of distress from social media posts and clinical transcripts to enable timely intervention before crises. When such risks go undetected, consequences can escalate to self-harm, long-term disability, reduced productivity, and significant societal and economic burden. Despite recent advances, detecting risk from online text remains challenging due to heterogeneous language, evolving semantics, and the sequential emergence of new datasets. Effective solutions must encode clinically meaningful cues, reason about causal relations, and adapt to new domains without forgetting prior knowledge. To address these challenges, this paper presents a Continual Neuro-Symbolic Graph… More >

  • Open Access

    ARTICLE

    Real-Time Mouth State Detection Based on a BiGRU-CLPSO Hybrid Model with Facial Landmark Detection for Healthcare Monitoring Applications

    Mong-Fong Horng1,#, Thanh-Lam Nguyen1,#, Thanh-Tuan Nguyen2,*, Chin-Shiuh Shieh1,*, Lan-Yuen Guo3, Chen-Fu Hung4, Chun-Chih Lo1

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.075064 - 29 January 2026

    Abstract The global population is rapidly expanding, driving an increasing demand for intelligent healthcare systems. Artificial intelligence (AI) applications in remote patient monitoring and diagnosis have achieved remarkable progress and are emerging as a major development trend. Among these applications, mouth motion tracking and mouth-state detection represent an important direction, providing valuable support for diagnosing neuromuscular disorders such as dysphagia, Bell’s palsy, and Parkinson’s disease. In this study, we focus on developing a real-time system capable of monitoring and detecting mouth state that can be efficiently deployed on edge devices. The proposed system integrates the Facial… More >

  • Open Access

    ARTICLE

    Noninvasive Radar Sensing Augmented with Machine Learning for Reliable Detection of Motor Imbalance

    Faten S. Alamri1, Adil Ali Saleem2, Muhammad I. Khan3, Hafeez Ur Rehman Siddiqui2, Amjad Rehman3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074679 - 29 January 2026

    Abstract Motor imbalance is a critical failure mode in rotating machinery, potentially causing severe equipment damage if undetected. Traditional vibration-based diagnostic methods rely on direct sensor contact, leading to installation challenges and measurement artifacts that can compromise accuracy. This study presents a novel radar-based framework for non-contact motor imbalance detection using 24 GHz continuous-wave radar. A dataset of 1802 experimental trials was sourced, covering four imbalance levels (0, 10, 20, 30 g) across varying motor speeds (500–1500 rpm) and load torques (0–3 Nm). Dual-channel in-phase and quadrature radar signals were captured at 10,000 samples per second… More >

  • Open Access

    ARTICLE

    Development of AI-Based Monitoring System for Stratified Quality Assessment of 3D Printed Parts

    Yewon Choi1,2, Song Hyeon Ju2, Jungsoo Nam2,*, Min Ku Kim1,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.071817 - 29 January 2026

    Abstract The composite material layering process has attracted considerable attention due to its production advantages, including high scalability and compatibility with a wide range of raw materials. However, changes in process conditions can lead to degradation in layer quality and non-uniformity, highlighting the need for real-time monitoring to improve overall quality and efficiency. In this study, an AI-based monitoring system was developed to evaluate layer width and assess quality in real time. Three deep learning models Faster Region-based Convolutional Neural Network (R-CNN), You Only Look Once version 8 (YOLOv8), and Single Shot MultiBox Detector (SSD) were… More >

  • Open Access

    ARTICLE

    A Hybrid Deep Learning Approach for Real-Time Cheating Behaviour Detection in Online Exams Using Video Captured Analysis

    Dao Phuc Minh Huy1, Gia Nhu Nguyen1, Dac-Nhuong Le2,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.070948 - 12 January 2026

    Abstract Online examinations have become a dominant assessment mode, increasing concerns over academic integrity. To address the critical challenge of detecting cheating behaviours, this study proposes a hybrid deep learning approach that combines visual detection and temporal behaviour classification. The methodology utilises object detection models—You Only Look Once (YOLOv12), Faster Region-based Convolutional Neural Network (RCNN), and Single Shot Detector (SSD) MobileNet—integrated with classification models such as Convolutional Neural Networks (CNN), Bidirectional Gated Recurrent Unit (Bi-GRU), and CNN-LSTM (Long Short-Term Memory). Two distinct datasets were used: the Online Exam Proctoring (EOP) dataset from Michigan State University and… More >

  • Open Access

    ARTICLE

    Block-Wise Sliding Recursive Wavelet Transform and Its Application in Real-Time Vehicle-Induced Signal Separation

    Jie Li1, Nan An2,3, Youliang Ding2,3,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.072361 - 08 January 2026

    Abstract Vehicle-induced response separation is a crucial issue in structural health monitoring (SHM). This paper proposes a block-wise sliding recursive wavelet transform algorithm to meet the real-time processing requirements of monitoring data. To extend the separation target from a fixed dataset to a continuously updating data stream, a block-wise sliding framework is first developed. This framework is further optimized considering the characteristics of real-time data streams, and its advantage in computational efficiency is theoretically demonstrated. During the decomposition and reconstruction processes, information from neighboring data blocks is fully utilized to reduce algorithmic complexity. In addition, a… More >

  • Open Access

    ARTICLE

    Diffusion-Driven Generation of Synthetic Complex Concrete Crack Images for Segmentation Tasks

    Pengwei Guo1, Xiao Tan2,3,*, Yiming Liu4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071317 - 08 January 2026

    Abstract Crack detection accuracy in computer vision is often constrained by limited annotated datasets. Although Generative Adversarial Networks (GANs) have been applied for data augmentation, they frequently introduce blurs and artifacts. To address this challenge, this study leverages Denoising Diffusion Probabilistic Models (DDPMs) to generate high-quality synthetic crack images, enriching the training set with diverse and structurally consistent samples that enhance the crack segmentation. The proposed framework involves a two-stage pipeline: first, DDPMs are used to synthesize high-fidelity crack images that capture fine structural details. Second, these generated samples are combined with real data to train… More >

  • Open Access

    ARTICLE

    BIM-Based Visualization System for Settlement Warning in Multi-Purpose Utility Tunnels (MUTs)

    Ping Wu1, Jie Zou2, Wangxin Li1,*, Yidong Xu1

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070873 - 08 January 2026

    Abstract The existing 2D settlement monitoring systems for utility tunnels are heavily reliant on manual interpretation of deformation data and empirical prediction models. Consequently, early anomalies (e.g., minor cracks) are often misjudged, and warnings lag by about 24 h without automated spatial localization. This study establishes a technical framework for requirements analysis, architectural design, and data-integration protocols. Revit parametric modelling is used to build a 3D tunnel model with structural elements, pipelines and 18 monitoring points (for displacement and joint width). Custom Revit API code integrated real-time sensor data into the BIM platform via an automated… More >

  • Open Access

    ARTICLE

    Stress Redistribution Patterns in Road-Rail Double-Deck Bridges: Insights from Long-Term Bridge Health Monitoring

    Benyu Wang*, Ke Chen, Bingjian Wang#,*

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070137 - 08 January 2026

    Abstract To examine stress redistribution phenomena in bridges subjected to varying operational conditions, this study conducts a comprehensive analysis of three years of monitoring data from a 153-m double-deck road–rail steel arch bridge. An initial statistical comparison of sensor data distributions reveals clear temporal variations in stress redistribution patterns. XGBoost (eXtreme Gradient Boosting), a gradient-boosting machine learning (ML) algorithm, was employed not only for predictive modeling but also to uncover the underlying mechanisms of stress evolution. Unlike traditional numerical models that rely on extensive assumptions and idealizations, XGBoost effectively captures nonlinear and time-varying relationships between stress… More >

Displaying 1-10 on page 1 of 385. Per Page