Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (308)
  • Open Access

    REVIEW

    Structural Modal Parameter Recognition and Related Damage Identification Methods under Environmental Excitations: A Review

    Chao Zhang1, Shang-Xi Lai1, Hua-Ping Wang1,2,*

    Structural Durability & Health Monitoring, Vol.19, No.1, pp. 25-54, 2025, DOI:10.32604/sdhm.2024.053662 - 15 November 2024

    Abstract Modal parameters can accurately characterize the structural dynamic properties and assess the physical state of the structure. Therefore, it is particularly significant to identify the structural modal parameters according to the monitoring data information in the structural health monitoring (SHM) system, so as to provide a scientific basis for structural damage identification and dynamic model modification. In view of this, this paper reviews methods for identifying structural modal parameters under environmental excitation and briefly describes how to identify structural damages based on the derived modal parameters. The paper primarily introduces data-driven modal parameter recognition methods… More >

  • Open Access

    ARTICLE

    IoT-Enabled Plant Monitoring System with Power Optimization and Secure Authentication

    Samsul Huda1,*, Yasuyuki Nogami2, Maya Rahayu2, Takuma Akada2, Md. Biplob Hossain2, Muhammad Bisri Musthafa2, Yang Jie2, Le Hoang Anh2

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3165-3187, 2024, DOI:10.32604/cmc.2024.058144 - 18 November 2024

    Abstract Global food security is a pressing issue that affects the stability and well-being of communities worldwide. While existing Internet of Things (IoT) enabled plant monitoring systems have made significant strides in agricultural monitoring, they often face limitations such as high power consumption, restricted mobility, complex deployment requirements, and inadequate security measures for data access. This paper introduces an enhanced IoT application for agricultural monitoring systems that address these critical shortcomings. Our system strategically combines power efficiency, portability, and secure access capabilities, assisting farmers in monitoring and tracking crop environmental conditions. The proposed system includes a… More >

  • Open Access

    PROCEEDINGS

    In-Situ Monitoring of Interplay Between Melt Pool, Spatter and Vapor in Laser Powder Bed Fusion Additive Manufacturing

    Xin Lin1,2,3, Kunpeng Zhu1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012499

    Abstract This paper reveals the interplay mechanism between melt pool, spattering and vapors, aiming to further improve the forming quality through in-situ monitoring with a CMOS camera. A Residual Network based on Convolutional Block Attention Module and Focal loss function is proposed to extract multi-scale features of single tracks and learn about their behavior changes. A t-SNE clustering analysis is utilized to analysis a large amount of time sequence data on the melt pool by collecting the schlieren photographs. It is found that patterns of unstable melt pool changing corelate to the defects in single tracks, More >

  • Open Access

    PROCEEDINGS

    In-Situ Process Monitoring and Quality Evaluation for Fused Deposition Modeling with Foaming Materials

    Zhaowei Zhou1, Kaicheng Ruan1, Donghua Zhao1, Yi Xiong1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011376

    Abstract Fused deposition modeling (FDM) with foaming materials offers the capability to generate internal porous structures through in-situ foaming, imparting favorable characteristics such as weight reduction, shock absorption, thermal insulation, and sound insulation to printed objects. However, the process planning for this technology presents challenges due to the difficulty in accurately controlling the foaming rate, stemming from a complex underlying mechanism that remains poorly understood. This study introduces a multi-sensor platform for FDM with foaming materials, facilitating in-situ process monitoring of temperature field information during material modeling and quality evaluation of printed objects, i.e., abnormal foaming… More >

  • Open Access

    PROCEEDINGS

    A Digital Twin Framework for Structural Strength Monitoring

    Ziyu Xu1, Kuo Tian1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011245

    Abstract Considering experimental testing data is costly, and sensor data is often sparse, while simulation analysis provides overall strength information with lower accuracy, a digital twin framework is proposed for full-field structural strength assessment and prediction. The framework is mainly divided into two stages. In the offline stage, the simulation model of the structure is established, and the sensor layouts are completed. Then, the DNN pre-training model is constructed based on the reduced simulation data. In the online stage, the experimentally measured data are predicted to obtain the time-series sensors data, and the traditional transfer learning… More >

  • Open Access

    ARTICLE

    NCCMF: Non-Collaborative Continuous Monitoring Framework for Container-Based Cloud Runtime Status

    Tao Zheng1, Wenyi Tang1,2,4,*, Xingshu Chen1,3,4, Changxiang Shen1,3,4

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1687-1701, 2024, DOI:10.32604/cmc.2024.056141 - 15 October 2024

    Abstract The security performance of cloud services is a key factor influencing users’ selection of Cloud Service Providers (CSPs). Continuous monitoring of the security status of cloud services is critical. However, existing research lacks a practical framework for such ongoing monitoring. To address this gap, this paper proposes the first Non-Collaborative Container-Based Cloud Service Operation State Continuous Monitoring Framework (NCCMF), based on relevant standards. NCCMF operates without the CSP’s collaboration by: 1) establishing a scalable supervisory index system through the identification of security responsibilities for each role, and 2) designing a Continuous Metrics Supervision Protocol (CMA) More >

  • Open Access

    REVIEW

    Wearable Healthcare and Continuous Vital Sign Monitoring with IoT Integration

    Hamed Taherdoost1,2,3,4,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 79-104, 2024, DOI:10.32604/cmc.2024.054378 - 15 October 2024

    Abstract Technical and accessibility issues in hospitals often prevent patients from receiving optimal mental and physical health care, which is essential for independent living, especially as societies age and chronic diseases like diabetes and cardiovascular disease become more common. Recent advances in the Internet of Things (IoT)-enabled wearable devices offer potential solutions for remote health monitoring and everyday activity recognition, gaining significant attention in personalized healthcare. This paper comprehensively reviews wearable healthcare technology integrated with the IoT for continuous vital sign monitoring. Relevant papers were extracted and analyzed using a systematic numerical review method, covering various More >

  • Open Access

    ARTICLE

    Big Model Strategy for Bridge Structural Health Monitoring Based on Data-Driven, Adaptive Method and Convolutional Neural Network (CNN) Group

    Yadong Xu1, Weixing Hong2, Mohammad Noori3,6,*, Wael A. Altabey4,*, Ahmed Silik5, Nabeel S.D. Farhan2

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 763-783, 2024, DOI:10.32604/sdhm.2024.053763 - 20 September 2024

    Abstract This study introduces an innovative “Big Model” strategy to enhance Bridge Structural Health Monitoring (SHM) using a Convolutional Neural Network (CNN), time-frequency analysis, and fine element analysis. Leveraging ensemble methods, collaborative learning, and distributed computing, the approach effectively manages the complexity and scale of large-scale bridge data. The CNN employs transfer learning, fine-tuning, and continuous monitoring to optimize models for adaptive and accurate structural health assessments, focusing on extracting meaningful features through time-frequency analysis. By integrating Finite Element Analysis, time-frequency analysis, and CNNs, the strategy provides a comprehensive understanding of bridge health. Utilizing diverse sensor More >

  • Open Access

    ARTICLE

    Structural Health Monitoring by Accelerometric Data of a Continuously Monitored Structure with Induced Damages

    Giada Faraco, Andrea Vincenzo De Nunzio, Nicola Ivan Giannoccaro*, Arcangelo Messina

    Structural Durability & Health Monitoring, Vol.18, No.6, pp. 739-762, 2024, DOI:10.32604/sdhm.2024.052663 - 20 September 2024

    Abstract The possibility of determining the integrity of a real structure subjected to non-invasive and non-destructive monitoring, such as that carried out by a series of accelerometers placed on the structure, is certainly a goal of extreme and current interest. In the present work, the results obtained from the processing of experimental data of a real structure are shown. The analyzed structure is a lattice structure approximately 9 m high, monitored with 18 uniaxial accelerometers positioned in pairs on 9 different levels. The data used refer to continuous monitoring that lasted for a total of 1… More >

  • Open Access

    ARTICLE

    MPDP: A Probabilistic Architecture for Microservice Performance Diagnosis and Prediction

    Talal H. Noor*

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1273-1299, 2024, DOI:10.32604/csse.2024.052510 - 13 September 2024

    Abstract In recent years, container-based cloud virtualization solutions have emerged to mitigate the performance gap between non-virtualized and virtualized physical resources. However, there is a noticeable absence of techniques for predicting microservice performance in current research, which impacts cloud service users’ ability to determine when to provision or de-provision microservices. Predicting microservice performance poses challenges due to overheads associated with actions such as variations in processing time caused by resource contention, which potentially leads to user confusion. In this paper, we propose, develop, and validate a probabilistic architecture named Microservice Performance Diagnosis and Prediction (MPDP). MPDP… More >

Displaying 1-10 on page 1 of 308. Per Page