Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    An Uncertainty Analysis and Reliability-Based Multidisciplinary Design Optimization Method Using Fourth-Moment Saddlepoint Approximation

    Yongqiang Guo1,2,*, Zhiyuan Lv3

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1855-1870, 2023, DOI:10.32604/cmes.2022.022211 - 20 September 2022

    Abstract In uncertainty analysis and reliability-based multidisciplinary design and optimization (RBMDO) of engineering structures, the saddlepoint approximation (SA) method can be utilized to enhance the accuracy and efficiency of reliability evaluation. However, the random variables involved in SA should be easy to handle. Additionally, the corresponding saddlepoint equation should not be complicated. Both of them limit the application of SA for engineering problems. The moment method can construct an approximate cumulative distribution function of the performance function based on the first few statistical moments. However, the traditional moment matching method is not very accurate generally. In… More >

  • Open Access

    ARTICLE

    Gyro-Chirality Effect of Bianisotropic Substrate on the Resonant Frequency and Half-power Bandwidth of Rectangular Microstrip Patch Antenna

    CMC-Computers, Materials & Continua, Vol.52, No.2, pp. 123-131, 2016, DOI:10.3970/cmc.2016.052.123

    Abstract In this paper, the gyrotropic bi-anisotropy of the chiral medium in substrate constitutive parameters (xc and hc) of a rectangular microstrip patch antenna is introduced in order to observe its effects on the complex resonant frequency and half-power bandwidth. The analysis is based on the full-wave spectral domain approach using the Moment Method, with sinusoidal type basis functions. The numerical calculations related to the dominant mode have been carried out, and it has been observed that the resonant frequency and the bandwidth are directly linked to the medium chirality. The new results can be considered More >

  • Open Access

    ARTICLE

    An Efficient Petrov-Galerkin Chebyshev Spectral Method Coupled with the Taylor-series Expansion Method of Moments for Solving the Coherent Structures Effect on Particle Coagulation in the Exhaust Pipe

    Chan T.L.1,2, Xie M.L.1,3, Cheung C.S.1

    CMES-Computer Modeling in Engineering & Sciences, Vol.51, No.3, pp. 191-212, 2009, DOI:10.3970/cmes.2009.051.191

    Abstract An efficient Petrov-Galerkin Chebyshev spectral method coupled with the Taylor-series expansion method of moments (TEMOM) was developed to simulate the effect of coherent structures on particle coagulation in the exhaust pipe. The Petrov-Galerkin Chebyshev spectral method was presented in detail focusing on the analyticity of solenoidal vector field used for the approximation of the flow. It satisfies the pole condition exactly at the origin, and can be used to expand the vector functions efficiently by using the solenoidal condition. This developed TEMOM method has no prior requirement for the particle size distribution (PSD). It is… More >

  • Open Access

    ARTICLE

    Probabilistic Interval Response and Reliability Analysis of Structures with A Mixture of Random and Interval Properties

    Wei Gao1, Chongmin Song1, Francis Tin-Loi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.46, No.2, pp. 151-190, 2009, DOI:10.3970/cmes.2009.046.151

    Abstract Static response and reliability of structures with a mixture of random and interval parameters under uncertain loads are investigated in this paper. Structural stiffness matrix is a random interval matrix when some structural parameters are modeled as random variables and others are considered as intervals. The structural displacement and stress responses are also random interval variables. From the static finite element governing equations, the random interval structural responses are obtained using the random interval perturbation method based on the first- and second-order perturbations. The expressions for mean value and standard deviation of random interval structural More >

Displaying 1-10 on page 1 of 4. Per Page