Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    PROCEEDINGS

    The Mechanical Property of 2D Materials and Potential Application in Gas Separation

    Dong Li1,*, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09714

    Abstract The family of 2D transition-metal oxides and dichalcogenides with 1H phase (1H-MX2) has sparked great interest from the perspective of basic physics and applied science. Interestingly, their performances could be further regulated and improved through strain engineering. Effective regulation is founded on a wellunderstood mechanical performance, however, the large number of 1H-MX2 materials has not yet been revealed. Here, a general theoretical model is constructed based on the molecular mechanics, which provides an effective and rapid analytical algorithm for evaluating the mechanical properties of the entire family of 1H-MX2. The validity of the constructed model is verified… More >

  • Open Access

    ARTICLE

    A New Molecular Structural Mechanics Model for the Flexural Analysis of Monolayer Graphene

    G. Shi 1, P. Zhao 1

    CMES-Computer Modeling in Engineering & Sciences, Vol.71, No.1, pp. 67-92, 2011, DOI:10.3970/cmes.2011.071.067

    Abstract Based on molecular mechanics and the concept of flexible connection used in the flexibly connected frames, a new structural mechanics model, a 2-D frame composed of anisotropic beams and flexible connections, is proposed for the simulation of the static and dynamic flexural behavior of monolayer graphene. The equivalent beam representing the C-C bond in the new molecular structural mechanics (MSM) model has two salient features compared with other MSM models presented for the analysis of carbon nanotubes: one is that the flexible connections at the beam ends are used to account for the bond-angle variations… More >

  • Open Access

    ARTICLE

    Study of Poisson Ratios of Single-Walled Carbon Nanotubes based on an Improved Molecular Structural Mechanics Model

    P. Zhao1, G. Shi1,2

    CMC-Computers, Materials & Continua, Vol.22, No.2, pp. 147-168, 2011, DOI:10.3970/cmc.2011.022.147

    Abstract The Poisson ratio is a very important mechanical parameter for both single-walled carbon nanotubes (SWCNTs) and graphene. But, the Poisson ratios of SWCNTs and graphene can not be determined by the direct measurement on the nanoscale specimen, and Poisson ratios of SWCNTs and graphene predicted by different models vary in a huge range. An improved molecular structural mechanics model, where the bond angle variations are modeled by the flexible connections of framed structures, is employed in this paper to predict the Poisson ratios of SWCNTs and monolayer graphene sheets. The present results indicate that the… More >

  • Open Access

    ABSTRACT

    Molecular Dynamics Simulations of Carbon Nanotubes Cross-Bonding by Proton Irradiation

    N. J. Lee, C.R. Welch1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.13, No.1, pp. 11-12, 2009, DOI:10.3970/icces.2009.013.011

    Abstract Carbon nanotubes have significant potential as the basis for super infrastructure material. The shear modulus of carbon nanotube ensembles is relatively low, comparable to graphite, as the carbon nanotubes interact via weak van der Waals forces. Unmodified, their intermolecular interactions are insufficient to take full advantage of the extraordinarily high strengths predicted for carbon nanotube-based fibers. Thus, a key to their use in high-strength materials is developing strong bonds between these molecules. In this study, we examine the potential development of covalent bonds between carbon nanotube pairs cross-bonded by proton bombardment using molecular dynamics simulation. More >

  • Open Access

    ARTICLE

    Shell Buckling of Carbon Nanotubes Using Nanoindentation

    L.Munteanu1, V.Chiroiu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.48, No.1, pp. 27-42, 2009, DOI:10.3970/cmes.2009.048.027

    Abstract The long-range nanoindentation response of carbon nanotubes is studied using a new method that combines the features of Nonlocal Theory and Molecular Mechanics. The deformation of compressed multiple walled carbon nanotubes is investigated, with the emphasis on the simulation of the nanoindentation technique in order to compare the present method to available experimental results. More >

  • Open Access

    ARTICLE

    Molecular Mechanics Based Finite Element For Carbon Nanotube Modeling

    T.C. Theodosiou1, D.A. Saravanos2

    CMES-Computer Modeling in Engineering & Sciences, Vol.19, No.2, pp. 121-134, 2007, DOI:10.3970/cmes.2007.019.121

    Abstract In this paper a new method is introduced for carbon nanotube modeling combining features of Molecular Mechanics and Finite Element Analysis. Repetitive atomic cells are treated as finite elements, whose internal energy is determined by the semi-empirical Brenner molecular potential model; internal forces and linearized stiffness matrices are formulated analytically in order to gain in speed and accuracy, and the resultant discrete system is formulated and solved using the Newton-Raphson method. The presented method is validated through comparisons to numerical and experimental results provided by other researchers. The bending and shearing of CNTs is also More >

  • Open Access

    ARTICLE

    A Tangent Stiffness MLPG Method for Atom/Continuum Multiscale Simulation

    Shengping Shen1, S. N. Atluri1

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 49-68, 2005, DOI:10.3970/cmes.2005.007.049

    Abstract The main objective of this paper is to develop a multiscale method for the static analysis of a nano-system, based on a combination of molecular mechanics and MLPG methods. The tangent-stiffness formulations are given for this multiscale method, as well as a pure molecular mechanics method. This method is also shown to naturally link the continuum local balance equation with molecular mechanics, directly, based on the stress or force. Numerical results show that this multiscale method quite accurate. The tangent-stiffness MLPG method is very effective and stable in multiscale simulations. This multiscale method dramatically reduces More >

  • Open Access

    ARTICLE

    Optimized Bearing and Interlayer Friction in Multiwalled Carbon Nanotubes

    Wanlin Guo1,2, Huajian Gao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.7, No.1, pp. 19-34, 2005, DOI:10.3970/cmes.2005.007.019

    Abstract A systematic investigation is performed on energy dissipation related interaction force associated with interlayer motion of sliding, rotation and telescoping between any two possible neighboring carbon nanotubes. In particular, we analyze the interlayer corrugation energy and sliding, rotation and telescoping resistance force associated with the Lennard-Jones potential as well as a registry-dependent graphitic potential. It is found that the interlayer resistance associated with both of these potentials can vary with the morphology, length and diameter of the two tubes. Energy dissipation related fluctuation of the resistant force can be as low as 10-18N/atom between the most More >

Displaying 1-10 on page 1 of 8. Per Page