Ahmed Abdullah Alqarni1, Nizar Alsharif1, Nayeem Ahmad Khan1,*, Lilia Georgieva2, Eric Pardade3, Mohammed Y. Alzahrani1
CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4075-4085, 2022, DOI:10.32604/cmc.2022.020389
- 27 September 2021
Abstract The rapid growth and uptake of network-based communication technologies have made cybersecurity a significant challenge as the number of cyber-attacks is also increasing. A number of detection systems are used in an attempt to detect known attacks using signatures in network traffic. In recent years, researchers have used different machine learning methods to detect network attacks without relying on those signatures. The methods generally have a high false-positive rate which is not adequate for an industry-ready intrusion detection product. In this study, we propose and implement a new method that relies on a modular deep More >