Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Forecasting Model of Photovoltaic Power Based on KPCA-MCS-DCNN

    Huizhi Gou1,2,*, Yuncai Ning1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 803-822, 2021, DOI:10.32604/cmes.2021.015922 - 22 July 2021

    Abstract Accurate photovoltaic (PV) power prediction can effectively help the power sector to make rational energy planning and dispatching decisions, promote PV consumption, make full use of renewable energy and alleviate energy problems. To address this research objective, this paper proposes a prediction model based on kernel principal component analysis (KPCA), modified cuckoo search algorithm (MCS) and deep convolutional neural networks (DCNN). Firstly, KPCA is utilized to reduce the dimension of the feature, which aims to reduce the redundant input vectors. Then using MCS to optimize the parameters of DCNN. Finally, the photovoltaic power forecasting method More >

Displaying 1-10 on page 1 of 1. Per Page