Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (87)
  • Open Access

    ARTICLE

    Plasma Surface Modification of Li2TiSiO5 Anode for Lithium-Ion Batteries

    Shangqi Sun1,2,3,*, Lingchao Xiao3, Qifeng Qian3, Yunfeng Deng1

    Energy Engineering, Vol.121, No.10, pp. 2769-2776, 2024, DOI:10.32604/ee.2024.052680 - 11 September 2024

    Abstract Solving intrinsic structural problems such as low conductivity is the main challenge to promote the commercial application of Li2TiSiO5. In this study, Li2TiSiO5 is synthesized by the sol-gel method, and the surface modification of Li2TiSiO5 is carried out at different temperatures using low-temperature plasma to enhance its lithium storage performance. The morphological structure and electrochemical tests demonstrate that plasma treatment can improve the degree of agglomeration. The peak position of the plasma-treated Li2TiSiO5 is shifted to a lower angle, and the shift angle increases with increasing sputtering power. Li2TiSiO5 after 300 W bombardment shows excellent capacity (144.7 mA·hg−1 More >

  • Open Access

    ARTICLE

    Biobased Furfurylated Poplar Wood for Flame-Retardant Modification with Boric Acid and Ammonium Dihydrogen Phosphate

    Ming Ni1, Lei Li1, Yiqiang Wu1,*, Jianzheng Qiao1, Yan Qing1, Ping Li2, Yingfeng Zuo1,*

    Journal of Renewable Materials, Vol.12, No.8, pp. 1355-1368, 2024, DOI:10.32604/jrm.2024.054050 - 06 September 2024

    Abstract Furfurylated wood exhibits excellent dimensional stability and corrosion resistance, making it a promising material for constructing buildings, but it is highly flammable. Herein, flame-retardant furfurylated poplar wood was produced via a two-step process utilizing boric acid (BA) and ammonium dihydrogen phosphate (ADP) as flame-retardant components, and biomass-derived furfuryl alcohol (FA) as a modifier. The acidity of BA and ADP allowed them to catalyze the polymerization of FA, which formed a cross-linked network that immobilized BA and ADP inside the wood. The addition of BA/ADP substantially delayed the time to ignition from 10 to 385 s More > Graphic Abstract

    Biobased Furfurylated Poplar Wood for Flame-Retardant Modification with Boric Acid and Ammonium Dihydrogen Phosphate

  • Open Access

    ARTICLE

    Multiple Perspective of Multipredictor Mechanism and Multihistogram Modification for High-Fidelity Reversible Data Hiding

    Kai Gao1, Chin-Chen Chang1,*, Chia-Chen Lin2,*

    Computer Systems Science and Engineering, Vol.48, No.3, pp. 813-833, 2024, DOI:10.32604/csse.2024.038308 - 20 May 2024

    Abstract Reversible data hiding is a confidential communication technique that takes advantage of image file characteristics, which allows us to hide sensitive data in image files. In this paper, we propose a novel high-fidelity reversible data hiding scheme. Based on the advantage of the multipredictor mechanism, we combine two effective prediction schemes to improve prediction accuracy. In addition, the multihistogram technique is utilized to further improve the image quality of the stego image. Moreover, a model of the grouped knapsack problem is used to speed up the search for the suitable embedding bin in each sub-histogram. More >

  • Open Access

    ARTICLE

    DNA Methylation Variation Is Identified in Monozygotic Twins Discordant for Congenital Heart Diseases

    Shuliang Xia1,2,3,#, Huikang Tao2,#, Shixin Su4, Xinxin Chen2, Li Ma2, Jianru Li5, Bei Gao6, Xumei Liu5, Lei Pi7, Jinqing Feng4, Fengxiang Li2, Jia Li4,*, Zhiwei Zhang1,3,*

    Congenital Heart Disease, Vol.19, No.2, pp. 247-256, 2024, DOI:10.32604/chd.2024.052583 - 16 May 2024

    Abstract Aims: Multiple genes and environmental factors are known to be involved in congenital heart disease (CHD), but epigenetic variation has received little attention. Monozygotic (MZ) twins with CHD provide a unique model for exploring this phenomenon. In order to investigate the potential role of Deoxyribonucleic Acid (DNA) methylation in CHD pathogenesis, the present study examined DNA methylation variation in MZ twins discordant for CHD, especially ventricular septal defect (VSD). Methods and Results: Using genome-wide DNA methylation profiles, we identified 4004 differentially methylated regions (DMRs) in 18 MZ twin pairs discordant for CHD, and 2826 genes were… More > Graphic Abstract

    DNA Methylation Variation Is Identified in Monozygotic Twins Discordant for Congenital Heart Diseases

  • Open Access

    ARTICLE

    Circ_0053943 complexed with IGF2BP3 drives uveal melanoma progression via regulating N6-methyladenosine modification of Epidermal growth factor receptor

    ANDI ZHAO1,2,#, YUE WANG3,#, ZIJIN WANG1,2, QING SHAO1,2, QI GONG1,2, HUI ZHU1,2, SHIYA SHEN1,2, HU LIU1,2,*, XUEJUAN CHEN1,2,*

    Oncology Research, Vol.32, No.5, pp. 983-998, 2024, DOI:10.32604/or.2024.045972 - 23 April 2024

    Abstract Numerous studies have characterized the critical role of circular RNAs (circRNAs) as regulatory factors in the progression of multiple cancers. However, the biological functions of circRNAs and their underlying molecular mechanisms in the progression of uveal melanoma (UM) remain enigmatic. In this study, we identified a novel circRNA, circ_0053943, through re-analysis of UM microarray data and quantitative RT-PCR. Circ_0053943 was found to be upregulated in UM and to promote the proliferation and metastatic ability of UM cells in both in vitro and in vivo settings. Mechanistically, circ_0053943 was observed to bind to the KH1 and KH2 domains of insulin-like… More > Graphic Abstract

    <i>Circ_0053943</i> complexed with IGF2BP3 drives uveal melanoma progression via regulating N6-methyladenosine modification of <i>Epidermal growth factor receptor</i>

  • Open Access

    REVIEW

    Mesenchymal stem cells and the angiogenic regulatory network with potential incorporation and modification for therapeutic development

    VAN THI TUONG NGUYEN1,2, KHUONG DUY PHAM1,2,3, HUONG THI QUE CAO1,2, PHUC VAN PHAM1,2,*

    BIOCELL, Vol.48, No.2, pp. 173-189, 2024, DOI:10.32604/biocell.2023.043664 - 23 February 2024

    Abstract Mesenchymal stem cells (MSCs) have been proposed in regenerative medicine, especially for angiogenic purposes, due to their potential to self-renew, differentiate, and regulate the microenvironment. Peripheral vascular diseases, which are associated with reduced blood supply, have been treated but not cured. An effective therapy is to recover blood supply via vessel regeneration in the affected area, and MSCs appear to be promising for such conditions. Several studies aimed to explore the role of MSCs in performing angiogenesis and have revealed numerous potential methods to enhance MSC capacity in vessel formation. Efforts have been made to More > Graphic Abstract

    Mesenchymal stem cells and the angiogenic regulatory network with potential incorporation and modification for therapeutic development

  • Open Access

    REVIEW

    A Brief Review of Surface Modification of Carbonyl Iron Powders (CIPs) for Magnetorheological Fluid Applications

    THIRUMALAISAMY SURYAPRABHAA, CHUNGHYUN CHOIA, ZUBAIR AHMED CHANDIOB, LAWRENCE ROBERT MSALILWAB, TAEGWANG YUNC,*, JUN YOUNG CHEONGB,*, BYUNGIL HWANGA,*

    Journal of Polymer Materials, Vol.40, No.3-4, pp. 191-204, 2023, DOI:10.32381/JPM.2023.40.3-4.5

    Abstract Magnetorheological fluids (MRFs) is a smart fluid system that exhibits swift and reversible alterations in their rheological characteristics when exposed to an external magnetic field. MRFs are used for applications in various areas, including automotive systems, robotics, aerospace, and civil engineering. The performance of MRFs depends on the behavior of the dispersed magnetic particles, necessitating thoughtful consideration of particle traits to optimize fluid performance. Carbonyl Iron Powders (CIPs), high purity iron (>98%) reduced from penta carbonyl iron, are widely employed in MRFs due to their exceptional magnetic characteristics. Nevertheless, the innate surfaces of CIPs tend… More >

  • Open Access

    ARTICLE

    Impact on Mechanical Properties of Surface Treated Coconut Leaf Sheath Fiber/Sic Nano Particles Reinforced Phenol-formaldehyde Polymer Composites

    B. BRAILSON MANSINGH1, K. L. NARASIMHAMU2, K. C. VARAPRASAD3, J. S. BINOJ4,*, A. RADHAKRISHNAN5, ALAMRY ALI6

    Journal of Polymer Materials, Vol.40, No.1-2, pp. 71-82, 2023, DOI:10.32381/JPM.2023.40.1-2.6

    Abstract Several agro-wastes are rich in natural fibers and finds scope to be used as reinforcement in composite industry. These natural fibers have some advantages over man-made fibers, including low cost, light weight, renewable nature, high specific strength and modulus, and availability in various forms worldwide. In this paper, the effect of surface modification of leaf sheath coconut fiber (LSF) (an agro-waste) reinforced in phenol formaldehyde matrix composites with silicon carbide (SiC) nano particles as filler material were investigated for its mechanical characteristics. The investigation portrays that coconut LSF (CLSF) modified with potassium permanganate reinforced polymer More >

  • Open Access

    ARTICLE

    A Smart Obfuscation Approach to Protect Software in Cloud

    Lei Yu1, Yucong Duan2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3949-3965, 2023, DOI:10.32604/cmc.2023.038970 - 08 October 2023

    Abstract Cloud computing and edge computing brought more software, which also brought a new danger of malicious software attacks. Data synchronization mechanisms of software can further help reverse data modifications. Based on the mechanisms, attackers can cover themselves behind the network and modify data undetected. Related knowledge of software reverse engineering can be organized as rules to accelerate the attacks, when attackers intrude cloud server to access the source or binary codes. Therefore, we proposed a novel method to resist this kind of reverse engineering by breaking these rules. Our method is based on software obfuscations… More >

  • Open Access

    ARTICLE

    Novel defined N7-methylguanosine modification-related lncRNAs for predicting the prognosis of laryngeal squamous cell carcinoma

    ZHAOXU YAO*, HAIBIN MA, LIN LIU, QIAN ZHAO, LONGCHAO QIN, XUEYAN REN, CHUANJUN WU, KAILI SUN

    BIOCELL, Vol.47, No.9, pp. 1965-1975, 2023, DOI:10.32604/biocell.2023.030796 - 28 September 2023

    Abstract Objective: Through integrated bioinformatics analysis, the goal of this work was to find new, characterised N7-methylguanosine modification-related long non-coding RNAs (m7G-lncRNAs) that might be used to predict the prognosis of laryngeal squamous cell carcinoma (LSCC). Methods: The clinical data and LSCC gene expression data for the current investigation were initially retrieved from the TCGA database & sanitised. Then, using co-expression analysis of m7G-associated mRNAs & lncRNAs & differential expression analysis (DEA) among LSCC & normal sample categories, we discovered lncRNAs that were connected to m7G. The prognosis prediction model was built for the training category… More >

Displaying 1-10 on page 1 of 87. Per Page