Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (416)
  • Open Access

    REVIEW

    A Comprehensive Overview and Comparative Analysis on Deep Learning Models

    Farhad Mortezapour Shiri*, Thinagaran Perumal, Norwati Mustapha, Raihani Mohamed

    Journal on Artificial Intelligence, Vol.6, pp. 301-360, 2024, DOI:10.32604/jai.2024.054314 - 20 November 2024

    Abstract Deep learning (DL) has emerged as a powerful subset of machine learning (ML) and artificial intelligence (AI), outperforming traditional ML methods, especially in handling unstructured and large datasets. Its impact spans across various domains, including speech recognition, healthcare, autonomous vehicles, cybersecurity, predictive analytics, and more. However, the complexity and dynamic nature of real-world problems present challenges in designing effective deep learning models. Consequently, several deep learning models have been developed to address different problems and applications. In this article, we conduct a comprehensive survey of various deep learning models, including Convolutional Neural Network (CNN), Recurrent… More >

  • Open Access

    REVIEW

    Discrete Choice Models and Artificial Intelligence Techniques for Predicting the Determinants of Transport Mode Choice—A Systematic Review

    Mujahid Ali*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2161-2194, 2024, DOI:10.32604/cmc.2024.058888 - 18 November 2024

    Abstract Forecasting travel demand requires a grasp of individual decision-making behavior. However, transport mode choice (TMC) is determined by personal and contextual factors that vary from person to person. Numerous characteristics have a substantial impact on travel behavior (TB), which makes it important to take into account while studying transport options. Traditional statistical techniques frequently presume linear correlations, but real-world data rarely follows these presumptions, which may make it harder to grasp the complex interactions. Thorough systematic review was conducted to examine how machine learning (ML) approaches might successfully capture nonlinear correlations that conventional methods may… More >

  • Open Access

    REVIEW

    AI-Powered Innovations in High-Tech Research and Development: From Theory to Practice

    Mitra Madanchian1,*, Hamed Taherdoost1,2,3,4

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2133-2159, 2024, DOI:10.32604/cmc.2024.057094 - 18 November 2024

    Abstract This comparative review explores the dynamic and evolving landscape of artificial intelligence (AI)-powered innovations within high-tech research and development (R&D). It delves into both theoretical models and practical applications across a broad range of industries, including biotechnology, automotive, aerospace, and telecommunications. By examining critical advancements in AI algorithms, machine learning, deep learning models, simulations, and predictive analytics, the review underscores the transformative role AI has played in advancing theoretical research and shaping cutting-edge technologies. The review integrates both qualitative and quantitative data derived from academic studies, industry reports, and real-world case studies to showcase the… More >

  • Open Access

    ARTICLE

    Tree-Based Solution Frameworks for Predicting Tunnel Boring Machine Performance Using Rock Mass and Material Properties

    Danial Jahed Armaghani1,*, Zida Liu2, Hadi Khabbaz1, Hadi Fattahi3, Diyuan Li2, Mohammad Afrazi4

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.3, pp. 2421-2451, 2024, DOI:10.32604/cmes.2024.052210 - 31 October 2024

    Abstract Tunnel Boring Machines (TBMs) are vital for tunnel and underground construction due to their high safety and efficiency. Accurately predicting TBM operational parameters based on the surrounding environment is crucial for planning schedules and managing costs. This study investigates the effectiveness of tree-based machine learning models, including Random Forest, Extremely Randomized Trees, Adaptive Boosting Machine, Gradient Boosting Machine, Extreme Gradient Boosting Machine (XGBoost), Light Gradient Boosting Machine, and CatBoost, in predicting the Penetration Rate (PR) of TBMs by considering rock mass and material characteristics. These techniques are able to provide a good relationship between input(s)… More >

  • Open Access

    ARTICLE

    Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models

    Vesal Khean1, Chomyong Kim2, Sunjoo Ryu2, Awais Khan1, Min Kyung Hong3, Eun Young Kim4, Joungmin Kim5, Yunyoung Nam3,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 773-787, 2024, DOI:10.32604/cmc.2024.056767 - 15 October 2024

    Abstract Human Interaction Recognition (HIR) was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements. HIR requires more sophisticated analysis than Human Action Recognition (HAR) since HAR focuses solely on individual activities like walking or running, while HIR involves the interactions between people. This research aims to develop a robust system for recognizing five common human interactions, such as hugging, kicking, pushing, pointing, and no interaction, from video sequences using multiple cameras. In this study, a hybrid Deep… More >

  • Open Access

    ARTICLE

    Improving Generalization for Hyperspectral Image Classification: The Impact of Disjoint Sampling on Deep Models

    Muhammad Ahmad1,*, Manuel Mazzara2, Salvatore Distefano3, Adil Mehmood Khan4, Hamad Ahmed Altuwaijri5

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 503-532, 2024, DOI:10.32604/cmc.2024.056318 - 15 October 2024

    Abstract Disjoint sampling is critical for rigorous and unbiased evaluation of state-of-the-art (SOTA) models e.g., Attention Graph and Vision Transformer. When training, validation, and test sets overlap or share data, it introduces a bias that inflates performance metrics and prevents accurate assessment of a model’s true ability to generalize to new examples. This paper presents an innovative disjoint sampling approach for training SOTA models for the Hyperspectral Image Classification (HSIC). By separating training, validation, and test data without overlap, the proposed method facilitates a fairer evaluation of how well a model can classify pixels it was… More >

  • Open Access

    ARTICLE

    Integrating Ontology-Based Approaches with Deep Learning Models for Fine-Grained Sentiment Analysis

    Longgang Zhao1, Seok-Won Lee2,*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1855-1877, 2024, DOI:10.32604/cmc.2024.056215 - 15 October 2024

    Abstract Although sentiment analysis is pivotal to understanding user preferences, existing models face significant challenges in handling context-dependent sentiments, sarcasm, and nuanced emotions. This study addresses these challenges by integrating ontology-based methods with deep learning models, thereby enhancing sentiment analysis accuracy in complex domains such as film reviews and restaurant feedback. The framework comprises explicit topic recognition, followed by implicit topic identification to mitigate topic interference in subsequent sentiment analysis. In the context of sentiment analysis, we develop an expanded sentiment lexicon based on domain-specific corpora by leveraging techniques such as word-frequency analysis and word embedding. More >

  • Open Access

    ARTICLE

    Efficient User Identity Linkage Based on Aligned Multimodal Features and Temporal Correlation

    Jiaqi Gao1, Kangfeng Zheng1,*, Xiujuan Wang2, Chunhua Wu1, Bin Wu2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 251-270, 2024, DOI:10.32604/cmc.2024.055560 - 15 October 2024

    Abstract User identity linkage (UIL) refers to identifying user accounts belonging to the same identity across different social media platforms. Most of the current research is based on text analysis, which fails to fully explore the rich image resources generated by users, and the existing attempts touch on the multimodal domain, but still face the challenge of semantic differences between text and images. Given this, we investigate the UIL task across different social media platforms based on multimodal user-generated contents (UGCs). We innovatively introduce the efficient user identity linkage via aligned multi-modal features and temporal correlation… More >

  • Open Access

    PROCEEDINGS

    Series-Parallel Machine Learning-Generated Five-Site Water Models for Ice Ih and Liquid: TIP5P-BG and TIP5P-BGT

    Jian Wang1,*, Haitao Hei1, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.010916

    Abstract Icing is a ubiquitous phenomenon in nature and widely observed in the micro/nanoconfinement, e.g., two-dimensional ice growth on Au surface, nanoconfinement-induced phase change, nanodroplet freezing on surface, etc. These complicated and abstruse processes and behaviours demand deep understanding from the microscale level by the aid of molecular dynamics (MD) simulation [1]. However, it is still a great challenge to accurately describe the ice and liquid water simultaneously with the present water models [1,2]. In response to this, we propose a series-parallel machine learning (ML) approach consisting of classification back-propagation neural network (BPNN), parallel regression BPNNs… More >

  • Open Access

    PROCEEDINGS

    Conforming Embedded Isogeometric Analysis with Applications in Structural Mechanics and Fluid-Solid Interactions

    Xuefeng Zhu1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.4, pp. 1-1, 2024, DOI:10.32604/icces.2024.012543

    Abstract Isogeometric Analysis (IGA) was introduced by Thomas Hughes et al. with the aim of integrating CAD and FEA. IGA methods can be categorized into two groups: Conforming IGA, such as T-spline based IGA, and non-conforming IGA, such as immersed or embedded IGA. Embedded or immersed IGA methods do not require the construction of analysis-aware geometry, unlike conforming IGA methods such as T-spline based IGA. However, the Galerkin method does not directly apply to these methods, making it challenging for immersed IGA methods to impose strong Dirichlet boundary conditions directly. Nitsche's method is a popular approach… More >

Displaying 1-10 on page 1 of 416. Per Page