Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (256)
  • Open Access

    ARTICLE

    Computational Analysis of Thermal Buckling in Doubly-Curved Shells Reinforced with Origami-Inspired Auxetic Graphene Metamaterials

    Ehsan Arshid*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074898 - 29 January 2026

    Abstract In this work, a computational modelling and analysis framework is developed to investigate the thermal buckling behavior of doubly-curved composite shells reinforced with graphene-origami (G-Ori) auxetic metamaterials. A semi-analytical formulation based on the First-Order Shear Deformation Theory (FSDT) and the principle of virtual displacements is established, and closed-form solutions are derived via Navier’s method for simply supported boundary conditions. The G-Ori metamaterial reinforcements are treated as programmable constructs whose effective thermo-mechanical properties are obtained via micromechanical homogenization and incorporated into the shell model. A comprehensive parametric study examines the influence of folding geometry, dispersion arrangement, More >

  • Open Access

    ARTICLE

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

    Abdulrazzak Akroot1, Kayser Aziz Ameen2, Haitham M. Ibrahim3, Hasanain A. Abdul Wahhab3,*, Miqdam T. Chaichan4

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073702 - 27 January 2026

    Abstract Improving energy efficiency and lowering negative environmental impact through waste heat recovery (WHR) is a critical step toward sustainable cement manufacturing. This study analyzes advanced cogeneration systems for recovering waste heat from the Fallujah White Cement Plant in Iraq. The novelty of this work lies in its direct application and comparative thermodynamic analysis of three distinct cogeneration cycles—the Organic Rankine Cycle, the Single-Flash Steam Cycle, and the Dual-Pressure Steam Cycle—within the Iraqi cement industry, a context that has not been widely studied. The main objective is to evaluate and compare these models to determine the… More > Graphic Abstract

    Modelling and Analysis of Enhanced Power Generation by Recovering Waste Heat from Fallujah White Cement Factory for Clean Energy Sustainability

  • Open Access

    ARTICLE

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

    Benali Touhami1, Bennaceur Said1, Atouani Toufik1, Lammari Khelifa2, Ouradj Boudjamaa2, Bounaama Fateh2, Belkacem Draoui2, Lyes Bennamoun3,*

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.073329 - 27 January 2026

    Abstract The aim of this study is to design, build, and evaluate an indirect forced convection solar dryer adapted to semi-arid climate, such as that of Béchar situated in the west south region of Algeria. The tested drying system consists of a flat-plate solar collector, an insulated two-chamber drying unit, and an Arduino-controlled device that ensures uniform temperature distribution and real-time monitoring using DHT22 sensors. Drying tests were conducted on locally grown beet slices at air temperatures of 45°C, 60°C, and 80°C, with a constant air velocity of 1.2 m/s and a mass flow rate of… More > Graphic Abstract

    Design and Development of a Forced-Convection Solar Dryer: Application to Beetroot Cultivated in Béchar, Algeria

  • Open Access

    ARTICLE

    3D Photogrammetric Modelling for Digital Twin Development: Accuracy Assessment Using UAV Multi-Altitude Imaging

    Nur Afikah Juhari, Khairul Nizam Tahar*

    Revue Internationale de Géomatique, Vol.35, pp. 1-11, 2026, DOI:10.32604/rig.2026.070991 - 19 January 2026

    Abstract The use of Unmanned Aerial Vehicles (UAVs) in photogrammetry has grown rapidly due to enhanced flight stability, high-resolution imaging, and advanced Structure from Motion (SfM) algorithms. This study investigates the potential of UAVs as a cost-effective alternative to Terrestrial Laser Scanners (TLS) for 3D building reconstruction. A 3D model of Bangunan Sarjana was generated in Agisoft Metashape Professional v.2.0.2 using 492 aerial images captured at flying altitudes of 40, 50, and 60 m. Ground control points were established using GNSS (RTK-VRS), and Total Station measurements were employed for accuracy validation. The results indicate that the 60 More >

  • Open Access

    ARTICLE

    Surrogate-Based Dimensional Optimization of a Polymeric Roller for Ore Belt Conveyors Considering Viscoelastic Effects

    Rafiq Said Dias Jabour, Marco Antonio Luersen*, Euclides Alexandre Bernardelli

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072266 - 12 January 2026

    Abstract The roller is one of the fundamental elements of ore belt conveyor systems since it supports, guides, and directs material on the belt. This component comprises a body (the external tube) that rotates around a fixed shaft supported by easels. The external tube and shaft of rollers used in ore conveyor belts are mostly made of steel, resulting in high mass, hindering maintenance and replacement. Aiming to achieve mass reduction, we conducted a structural optimization of a roller with a polymeric external tube (hereafter referred to as a polymeric roller), seeking the optimal values for… More >

  • Open Access

    ARTICLE

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

    Hüseyin Bilgin*, Bredli Plaku

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071007 - 08 January 2026

    Abstract Nonlinear static procedures are widely adopted in structural engineering practice for seismic performance assessment due to their simplicity and computational efficiency. However, their reliability depends heavily on how the nonlinear behaviour of structural components is represented. The recent earthquakes in Albania (2019) and Türkiye (2023) have underscored the need for accurate assessment techniques, particularly for older reinforced concrete buildings with poor detailing. This study quantifies the discrepancies between default and user-defined component modelling in pushover analysis of pre-modern reinforced concrete structures, analysing two representative low- and mid-rise reinforced concrete frame buildings. The lumped plasticity approach… More > Graphic Abstract

    Revisiting Nonlinear Modelling Approaches for Existing RC Structures: Lumped vs. Distributed Plasticity

  • Open Access

    ARTICLE

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of Marrubium vulgare Leaves

    Mohammed Benamara1,2, Boumediene Touati3, Said Bennaceur4, Bendjillali Ridha Ilyas5,*

    Energy Engineering, Vol.123, No.1, 2026, DOI:10.32604/ee.2025.072641 - 27 December 2025

    Abstract This study explores the thin-layer convective solar drying of Marrubium vulgare L. leaves under conditions typical of sun-rich semi-arid climates. Drying experiments were conducted at three inlet-air temperatures (40°C, 50°C, 60°C) and two air velocities (1.5 and 2.5 m·s−1) using an indirect solar dryer with auxiliary temperature control. Moisture-ratio data were fitted with eight widely used thin-layer models and evaluated using correlation coefficient (r), root-mean-square error (RMSE), and Akaike information criterion (AIC). A complementary heat-transfer analysis based on Reynolds and Prandtl numbers with appropriate Nusselt correlations was used to relate flow regime to drying performance, and an… More > Graphic Abstract

    Thin-Layer Convective Solar Drying and Mathematical Modelling of the Drying Kinetics of <i>Marrubium vulgare</i> Leaves

  • Open Access

    PROCEEDINGS

    Mechanical Characterisation and Material Modelling of Human Aortas with Vascular Smooth Muscle Activation

    Ivan Breslavsky1,*, Giulio Franchini2, Francesco Giovanniello3, Ali Kassab3,4, Gerhard A. Holzapfel5,6, Marco Amabili1,3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.34, No.1, pp. 1-1, 2025, DOI:10.32604/icces.2025.012190

    Abstract Despite the critical role of vascular smooth muscle (VSM) activation in the biomechanics of human aortas, comprehensive experimental data and corresponding active material models remain limited. This study addresses this gap by presenting a detailed mechanical characterisation of human descending thoracic aortas under both passive and VSM-activated conditions.
    Specimens were obtained from thirteen heart-beating donors. Mechanical testing was conducted within hours of explantation. VSM activation was induced using potassium chloride and noradrenaline, and both isometric and quasistatic stress–strain responses were measured in circumferential and longitudinal tissue strips.
    Dynamic mechanical testing under physiologically relevant cyclic loading and More >

  • Open Access

    ARTICLE

    Numerical Modelling of Oblique Wave Interaction with Dual Curved-LEG Pontoon Floating Breakwaters

    Jothika Palanisamy1, Chandru Muthusamy1,*, Higinio Ramos2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2017-2038, 2025, DOI:10.32604/cmes.2025.071958 - 26 November 2025

    Abstract This study investigates the performance of dual curved-leg pontoon floating breakwaters in finite water depth under the assumption of linear wave theory. The analysis is carried out for four different models of curved-leg geometries, which are combinations of convex and concave shapes. The models are classified as follows. Model-1: Seaside and leeside face concave, Model-2: Seaside and leeside face convex, Model-3: Seaside face convex and leeside face concave, and Model-4: Seaside face concave and leeside face convex. The Boundary Element Method is utilized in order to find a solution to the associated boundary value problem.… More >

  • Open Access

    REVIEW

    A Comprehensive Review of Sizing and Allocation of Distributed Power Generation: Optimization Techniques, Global Insights, and Smart Grid Implications

    Abdullrahman A. Al-Shamma’a1, Hassan M. Hussein Farh1,*, Ridwan Taiwo2, Al-Wesabi Ibrahim3, Abdulrhman Alshaabani1, Saad Mekhilef 4, Mohamed A. Mohamed5,6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1303-1347, 2025, DOI:10.32604/cmes.2025.071302 - 26 November 2025

    Abstract Optimal sizing and allocation of distributed generators (DGs) have become essential computational challenges in improving the performance, efficiency, and reliability of electrical distribution networks. Despite extensive research, existing approaches often face algorithmic limitations such as slow convergence, premature stagnation in local minima, or suboptimal accuracy in determining optimal DG placement and capacity. This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement. It integrates both quantitative and qualitative analyses of the scholarly landscape, mapping influential research domains, co-authorship structures, the More >

Displaying 1-10 on page 1 of 256. Per Page