Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    ARTICLE

    Analysis of the Mechanisms Underpinning Rainstorm-Induced Landslides

    Shaojie Feng*, Leipeng Liu, Chen Gao, Hang Hu

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.5, pp. 1189-1201, 2023, DOI:10.32604/fdmp.2023.023637 - 30 November 2022

    Abstract The present study considers the damage mechanisms and the rainfall infiltration process responsible for landslide phenomena which originate from accumulation slopes. Accordingly, a physical test model is developed for different slopes and different rainfall conditions. Moreover, a three-dimensional laser scanner and a camera are used to monitor the slope erosion and the landslide dynamic evolution. Using this approach, the time variation curves of volumetric water content, pore water pressure, soil pressure, slope deformation, and damage are determined. The results show that under similar conditions, similar trends of the pore water pressure are achieved for different More > Graphic Abstract

    Analysis of the Mechanisms Underpinning Rainstorm-Induced Landslides

  • Open Access

    ARTICLE

    A Water-Heat-Force Coupled Framework for the Preparation of Soils for Application in Frozen Soil Model Test

    Daoming Shen1,*, Xia Zhang2, Jinhong Xia1, Shunqun Li3

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 21-37, 2021, DOI:10.32604/fdmp.2021.010767 - 09 February 2021

    Abstract The freezing of soil containing a liquid is a complex transient heat conduction problem involving phase change and release or absorption of latent heat. Existing efforts have essentially focused on theoretical research and numerical simulations. In the present study, the problem is approached from an experimental point of view using the so-called “freezing model test” method. In particular, in order to establish a precise relationship between the model and the prototype, a temperature similarity criterion is derived using the condition of an equal number of Kosovitch. Similarity is also established with respect to other aspects. More >

  • Open Access

    ARTICLE

    Laboratory Model Tests and DEM Simulations of Unloading- Induced Tunnel Failure Mechanism

    Abierdi1, Yuzhou Xiang2, Haiyi Zhong2, Xin Gu2, Hanlong Liu2, 3, Wengang Zhang2, 3, *

    CMC-Computers, Materials & Continua, Vol.63, No.2, pp. 825-844, 2020, DOI:10.32604/cmc.2020.07946 - 01 May 2020

    Abstract Tunnel excavation is a complicated loading-unloading-reloading process characterized by decreased radial stresses and increased axial stresses. An approach that considers only loading, is generally used in tunnel model testing. However, this approach is incapable of characterizing the unloading effects induced by excavation on surrounding rocks and hence presents radial and tangential stress paths during the failure process that are different from the actual stress state of tunnels. This paper carried out a comparative analysis using laboratory model testing and particle flow code (PFC2D)-based numerical simulation, and shed light upon the crack propagation process and, microscopic stress More >

  • Open Access

    ARTICLE

    Centrifuge Model Tests and Numerical Simulations of the Impact of Underwater Explosion on an Air-Backed Steel Plate

    Zhijie Huang1,2,3, Zuyu Chen1,2,3, Xiaodan Ren4,*, Jing Hu3, Xuedong Zhang3, Lu Hai4

    CMES-Computer Modeling in Engineering & Sciences, Vol.118, No.1, pp. 139-155, 2019, DOI:10.31614/cmes.2019.04596

    Abstract Damage and threats to hydraulic and submarine structures by underwater explosions (UNDEXs) have raised much attention. The centrifuge model test, compared to prototype test, is a more promising way to examine the problem while reducing cost and satisfying the similitude requirements of both Mach and Froude numbers simultaneously. This study used a systematic approach employing centrifuge model tests and numerical simulations to investigate the effects of UNDEXs on an air-backed steel plate. Nineteen methodical centrifuge tests of UNDEXs were conducted. The shock wave pressure, bubble oscillation pressure, acceleration and the strain of the air-backed steel More >

  • Open Access

    ABSTRACT

    Face stability of shallow shield tunnels in dry sandy ground: model tests, discrete element method simulations and theoretical model

    Renpeng Chen, Linggang kong, Lvjun Tang, Yunmin Chen

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.4, pp. 99-100, 2011, DOI:10.3970/icces.2011.020.099

    Abstract Face stability is critical in the underground tunneling. In this report, large-scale model tests on the face stability of shallow tunnels for various cover depths (C/D = 0.5, 1, and 2) in dry sandy ground were firstly introduced. Then, a series of three-dimensional DEM models were built to simulated the process of tunnel face failure. The results of the model tests and DEM simulations reveal that a chimney like failure zone appears during the tunnel face failure. It was founded that with the increase of the horizontal displacement of the tunnel face, the support pressure More >

  • Open Access

    ABSTRACT

    Large-scale model tests on high-rise platform pile groups under cyclic lateral load

    Gu Ming

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.20, No.3, pp. 97-98, 2011, DOI:10.3970/icces.2011.020.097

    Abstract With the rapid development of the ocean economy in our country, more and more offshore structures appear in recent years, and high-rise platform pile group is one of the conventional forms of these structures. A large-scale physical model test was carried out to study the bearing characteristics of high-rise platform pile group subjected to cyclic lateral load such as wave, tidewater and wind, etc. Two sets of pile group tests under lateral load were conducted in QianTang silts, which consist of nine steel-pipes in a closely-spaced arrangement. The group effect of pile groups, and its More >

Displaying 1-10 on page 1 of 6. Per Page