Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Enhancing Tea Leaf Disease Identification with Lightweight MobileNetV2

    Zhilin Li1,2, Yuxin Li1, Chunyu Yan1, Peng Yan1, Xiutong Li1, Mei Yu1, Tingchi Wen4,5, Benliang Xie1,2,3,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 679-694, 2024, DOI:10.32604/cmc.2024.051526 - 18 July 2024

    Abstract Diseases in tea trees can result in significant losses in both the quality and quantity of tea production. Regular monitoring can help to prevent the occurrence of large-scale diseases in tea plantations. However, existing methods face challenges such as a high number of parameters and low recognition accuracy, which hinders their application in tea plantation monitoring equipment. This paper presents a lightweight I-MobileNetV2 model for identifying diseases in tea leaves, to address these challenges. The proposed method first embeds a Coordinate Attention (CA) module into the original MobileNetV2 network, enabling the model to locate disease More >

Displaying 1-10 on page 1 of 1. Per Page