Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (28)
  • Open Access

    PROCEEDINGS

    Dynamics and Control of a Tethered Solar Sail Spacecraft for Solar Corona Observation Under the Sun-Earth CRTBP Framework

    Xinyu Jiang1, Chongrui Du1, Yamin Wang2, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.33, No.4, pp. 1-1, 2025, DOI:10.32604/icces.2025.011552

    Abstract Persistent high-resolution observation of the solar corona is essential for advancing human’s understanding of critical solar phenomena, including coronal heating, solar wind acceleration, and the initiation of coronal mass ejections that significantly impact space weather. This study proposes a novel space-based solar corona observation mission concept, which uses a tethered solar sail spacecraft to create a sustained artificial total solar eclipse near the Sun-Earth L2 point. By positioning a probe at the end of Earth’s umbra cone and leveraging Earth as a natural occulter, the mission enables uninterrupted observations of the innermost solar corona. To… More >

  • Open Access

    ARTICLE

    Three-Dimensional Trajectory Planning for Robotic Manipulators Using Model Predictive Control and Point Cloud Optimization

    Zeinel Momynkulov1,2, Azhar Tursynova1,2,*, Olzhas Olzhayev1,2, Akhanseri Ikramov1,2, Sayat Ibrayev1, Batyrkhan Omarov1,2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 891-918, 2025, DOI:10.32604/cmes.2025.068615 - 30 October 2025

    Abstract Robotic manipulators increasingly operate in complex three-dimensional workspaces where accuracy and strict limits on position, velocity, and acceleration must be satisfied. Conventional geometric planners emphasize path smoothness but often ignore dynamic feasibility, motivating control-aware trajectory generation. This study presents a novel model predictive control (MPC) framework for three-dimensional trajectory planning of robotic manipulators that integrates second-order dynamic modeling and multi-objective parameter optimization. Unlike conventional interpolation techniques such as cubic splines, B-splines, and linear interpolation, which neglect physical constraints and system dynamics, the proposed method generates dynamically feasible trajectories by directly optimizing over acceleration inputs while… More >

  • Open Access

    ARTICLE

    A Two-Layer Energy Management Strategy for Fuel Cell Ships Considering the Performance Consistency of Fuel Cells

    Yi Zhang1, Diju Gao1,*, Yide Wang2, Zhaoxia Huang3

    Energy Engineering, Vol.122, No.9, pp. 3681-3702, 2025, DOI:10.32604/ee.2025.068656 - 26 August 2025

    Abstract Hydrogen fuel cell ships are one of the key solutions to achieving zero carbon emissions in shipping. Multi-fuel cell stacks (MFCS) systems are frequently employed to fulfill the power requirements of high-load power equipment on ships. Compared to single-stack system, MFCS may be difficult to apply traditional energy management strategies (EMS) due to their complex structure. In this paper, a two-layer power allocation strategy for MFCS of a hydrogen fuel cell ship is proposed to reduce the complexity of the allocation task by splitting it into each layer of the EMS. The first layer of… More > Graphic Abstract

    A Two-Layer Energy Management Strategy for Fuel Cell Ships Considering the Performance Consistency of Fuel Cells

  • Open Access

    ARTICLE

    Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control

    Yuanxiang Luo*, Linshu Cai, Nan Zhang

    Energy Engineering, Vol.122, No.2, pp. 765-783, 2025, DOI:10.32604/ee.2024.058426 - 31 January 2025

    Abstract Large-scale new energy grid connection leads to the weakening of the system frequency regulation capability, and the system frequency stability is facing unprecedented challenges. In order to solve rapid frequency fluctuation caused by new energy units, this paper proposes a new energy power system frequency regulation strategy with multiple units including the doubly-fed pumped storage unit (DFPSU). Firstly, based on the model predictive control (MPC) theory, the state space equations are established by considering the operating characteristics of the units and the dynamic behavior of the system; secondly, the proportional-differential control link is introduced to… More > Graphic Abstract

    Doubly-Fed Pumped Storage Units Participation in Frequency Regulation Control Strategy for New Energy Power Systems Based on Model Predictive Control

  • Open Access

    ARTICLE

    Modular System of Cascaded Converters Based on Model Predictive Control

    Chunxue Wen, Yaoquan Wei*, Peng Wang, Jianlin Li, Jinghua Zhou, Qingyun Li

    Energy Engineering, Vol.121, No.11, pp. 3241-3261, 2024, DOI:10.32604/ee.2024.051810 - 21 October 2024

    Abstract A modular system of cascaded converters based on model predictive control (MPC) is proposed to meet the application requirements of multiple voltage levels and electrical isolation in renewable energy generation systems. The system consists of a Buck/Boost + CLLLC cascaded converter as a submodule, which is combined in series and parallel on the input and output sides to achieve direct-current (DC) voltage transformation, bidirectional energy flow, and electrical isolation. The CLLLC converter operates in DC transformer mode in the submodule, while the Buck/Boost converter participates in voltage regulation. This article establishes a suitable mathematical model More >

  • Open Access

    ARTICLE

    Enhancing Safety in Autonomous Vehicle Navigation: An Optimized Path Planning Approach Leveraging Model Predictive Control

    Shih-Lin Lin*, Bo-Chen Lin

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3555-3572, 2024, DOI:10.32604/cmc.2024.055456 - 12 September 2024

    Abstract This paper explores the application of Model Predictive Control (MPC) to enhance safety and efficiency in autonomous vehicle (AV) navigation through optimized path planning. The evolution of AV technology has progressed rapidly, moving from basic driver-assistance systems (Level 1) to fully autonomous capabilities (Level 5). Central to this advancement are two key functionalities: Lane-Change Maneuvers (LCM) and Adaptive Cruise Control (ACC). In this study, a detailed simulation environment is created to replicate the road network between Nantun and Wuri on National Freeway No. 1 in Taiwan. The MPC controller is deployed to optimize vehicle trajectories,… More >

  • Open Access

    ARTICLE

    Multi-Time Scale Optimal Scheduling of a Photovoltaic Energy Storage Building System Based on Model Predictive Control

    Ximin Cao*, Xinglong Chen, He Huang, Yanchi Zhang, Qifan Huang

    Energy Engineering, Vol.121, No.4, pp. 1067-1089, 2024, DOI:10.32604/ee.2023.046783 - 26 March 2024

    Abstract Building emission reduction is an important way to achieve China’s carbon peaking and carbon neutrality goals. Aiming at the problem of low carbon economic operation of a photovoltaic energy storage building system, a multi-time scale optimal scheduling strategy based on model predictive control (MPC) is proposed under the consideration of load optimization. First, load optimization is achieved by controlling the charging time of electric vehicles as well as adjusting the air conditioning operation temperature, and the photovoltaic energy storage building system model is constructed to propose a day-ahead scheduling strategy with the lowest daily operation… More >

  • Open Access

    ARTICLE

    Multi-Time Scale Operation and Simulation Strategy of the Park Based on Model Predictive Control

    Jun Zhao*, Chaoying Yang, Ran Li, Jinge Song

    Energy Engineering, Vol.121, No.3, pp. 747-767, 2024, DOI:10.32604/ee.2023.042806 - 27 February 2024

    Abstract Due to the impact of source-load prediction power errors and uncertainties, the actual operation of the park will have a wide range of fluctuations compared with the expected state, resulting in its inability to achieve the expected economy. This paper constructs an operating simulation model of the park power grid operation considering demand response and proposes a multi-time scale operating simulation method that combines day-ahead optimization and model predictive control (MPC). In the day-ahead stage, an operating simulation plan that comprehensively considers the user’s side comfort and operating costs is proposed with a long-term time More >

  • Open Access

    ARTICLE

    Model Predictive Control Strategy of Multi-Port Interline DC Power Flow Controller

    He Wang1, Xiangsheng Xu1, Guanye Shen2, Bian Jing1,*

    Energy Engineering, Vol.120, No.10, pp. 2251-2272, 2023, DOI:10.32604/ee.2023.028965 - 28 September 2023

    Abstract There are issues with flexible DC transmission system such as a lack of control freedom over power flow. In order to tackle these issues, a DC power flow controller (DCPFC) is incorporated into a multi-terminal, flexible DC power grid. In recent years, a multi-port DC power flow controller based on a modular multi-level converter has become a focal point of research due to its simple structure and robust scalability. This work proposes a model predictive control (MPC) strategy for multi-port interline DC power flow controllers in order to improve their steady-state dynamic performance. Initially, the… More >

  • Open Access

    PROCEEDINGS

    Efficient Calculation Model and Guidance Law of Non-Contact Plasma Plume De-Tumbling

    Chenhao Zuo1, Hongqian Zhao1, Xiaokui Yue1, Honghua Dai1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09494

    Abstract Dramatically increase of the amount of the failed satellites is posing a serious threat to the normal orbiting satellites. To avoid potential collisions, it is important to remove the failed satellites, and the first step is to detumble these uncontrolled targets. This study proposes an efficient calculation method for the failed satellite de-tumbling system. The plasma plume generated by Hall effect thruster on chaser is used as noncontact de-tumbling medium, which reduces fuel consumption and collision risk [1]. The plasma plume is composed of a variety of particles with strong disorder, so it is difficult… More >

Displaying 1-10 on page 1 of 28. Per Page