Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access

    REVIEW

    The Transparency Revolution in Geohazard Science: A Systematic Review and Research Roadmap for Explainable Artificial Intelligence

    Moein Tosan1,*, Vahid Nourani2,3, Ozgur Kisi4,5,6, Yongqiang Zhang7, Sameh A. Kantoush8, Mekonnen Gebremichael9, Ruhollah Taghizadeh-Mehrjardi10, Jinhui Jeanne Huang11

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074768 - 29 January 2026

    Abstract The integration of machine learning (ML) into geohazard assessment has successfully instigated a paradigm shift, leading to the production of models that possess a level of predictive accuracy previously considered unattainable. However, the black-box nature of these systems presents a significant barrier, hindering their operational adoption, regulatory approval, and full scientific validation. This paper provides a systematic review and synthesis of the emerging field of explainable artificial intelligence (XAI) as applied to geohazard science (GeoXAI), a domain that aims to resolve the long-standing trade-off between model performance and interpretability. A rigorous synthesis of 87 foundational… More >

  • Open Access

    ARTICLE

    Explainable Ensemble Learning Framework for Early Detection of Autism Spectrum Disorder: Enhancing Trust, Interpretability and Reliability in AI-Driven Healthcare

    Menwa Alshammeri1,2,*, Noshina Tariq3, NZ Jhanji4,5, Mamoona Humayun6, Muhammad Attique Khan7

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074627 - 29 January 2026

    Abstract Artificial Intelligence (AI) is changing healthcare by helping with diagnosis. However, for doctors to trust AI tools, they need to be both accurate and easy to understand. In this study, we created a new machine learning system for the early detection of Autism Spectrum Disorder (ASD) in children. Our main goal was to build a model that is not only good at predicting ASD but also clear in its reasoning. For this, we combined several different models, including Random Forest, XGBoost, and Neural Networks, into a single, more powerful framework. We used two different types More >

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Advanced Machine Learning and Gene Expression Programming Techniques for Predicting CO2-Induced Alterations in Coal Strength

    Zijian Liu1, Yong Shi2, Chuanqi Li1, Xiliang Zhang3,*, Jian Zhou1, Manoj Khandelwal4,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 153-183, 2025, DOI:10.32604/cmes.2025.062426 - 11 April 2025

    Abstract Given the growing concern over global warming and the critical role of carbon dioxide (CO2) in this phenomenon, the study of CO2-induced alterations in coal strength has garnered significant attention due to its implications for carbon sequestration. A large number of experiments have proved that CO2 interaction time (T), saturation pressure (P) and other parameters have significant effects on coal strength. However, accurate evaluation of CO2-induced alterations in coal strength is still a difficult problem, so it is particularly important to establish accurate and efficient prediction models. This study explored the application of advanced machine learning (ML)… More >

  • Open Access

    ARTICLE

    Machine Learning-Driven Classification for Enhanced Rule Proposal Framework

    B. Gomathi1,*, R. Manimegalai1, Srivatsan Santhanam2, Atreya Biswas3

    Computer Systems Science and Engineering, Vol.48, No.6, pp. 1749-1765, 2024, DOI:10.32604/csse.2024.056659 - 22 November 2024

    Abstract In enterprise operations, maintaining manual rules for enterprise processes can be expensive, time-consuming, and dependent on specialized domain knowledge in that enterprise domain. Recently, rule-generation has been automated in enterprises, particularly through Machine Learning, to streamline routine tasks. Typically, these machine models are black boxes where the reasons for the decisions are not always transparent, and the end users need to verify the model proposals as a part of the user acceptance testing to trust it. In such scenarios, rules excel over Machine Learning models as the end-users can verify the rules and have more… More >

  • Open Access

    ARTICLE

    Analysis of Feature Importance and Interpretation for Malware Classification

    Dong-Wook Kim1, Gun-Yoon Shin1, Myung-Mook Han2, *

    CMC-Computers, Materials & Continua, Vol.65, No.3, pp. 1891-1904, 2020, DOI:10.32604/cmc.2020.010933 - 16 September 2020

    Abstract This study was conducted to enable prompt classification of malware, which was becoming increasingly sophisticated. To do this, we analyzed the important features of malware and the relative importance of selected features according to a learning model to assess how those important features were identified. Initially, the analysis features were extracted using Cuckoo Sandbox, an open-source malware analysis tool, then the features were divided into five categories using the extracted information. The 804 extracted features were reduced by 70% after selecting only the most suitable ones for malware classification using a learning model-based feature selection More >

Displaying 1-10 on page 1 of 6. Per Page