Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3,385)
  • Open Access

    ARTICLE

    Aggravation of Cancer, Heart Diseases and Diabetes Subsequent to COVID-19 Lockdown via Mathematical Modeling

    Fatma Nese Efil1, Sania Qureshi1,2,3, Nezihal Gokbulut1,4, Kamyar Hosseini1,3, Evren Hincal1,4,*, Amanullah Soomro2

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 485-512, 2024, DOI:10.32604/cmes.2024.047907

    Abstract The global population has been and will continue to be severely impacted by the COVID-19 epidemic. The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer, heart disease, and diabetes. Here, using ordinary differential equations (ODEs), two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease. After that, we highlight the stability assessments that can be applied to these models. Sensitivity analysis is used to examine how changes in certain factors impact different aspects… More >

  • Open Access

    ARTICLE

    Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks

    Haosong Gou1, Gaoyi Zhang1, Renê Ripardo Calixto2, Senthil Kumar Jagatheesaperumal3, Victor Hugo C. de Albuquerque2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1077-1102, 2024, DOI:10.32604/cmes.2024.047806

    Abstract Large-scale wireless sensor networks (WSNs) play a critical role in monitoring dangerous scenarios and responding to medical emergencies. However, the inherent instability and error-prone nature of wireless links present significant challenges, necessitating efficient data collection and reliable transmission services. This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs. The primary goal is to enhance the reliability of data collection and transmission services, ensuring a comprehensive and practical approach. Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability. Additionally,… More >

  • Open Access

    ARTICLE

    Deep Learning Social Network Access Control Model Based on User Preferences

    Fangfang Shan1,2,*, Fuyang Li1, Zhenyu Wang1, Peiyu Ji1, Mengyi Wang1, Huifang Sun1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1029-1044, 2024, DOI:10.32604/cmes.2024.047665

    Abstract A deep learning access control model based on user preferences is proposed to address the issue of personal privacy leakage in social networks. Firstly, social users and social data entities are extracted from the social network and used to construct homogeneous and heterogeneous graphs. Secondly, a graph neural network model is designed based on user daily social behavior and daily social data to simulate the dissemination and changes of user social preferences and user personal preferences in the social network. Then, high-order neighbor nodes, hidden neighbor nodes, displayed neighbor nodes, and social data nodes are used to update user nodes… More >

  • Open Access

    REVIEW

    A Survey on Chinese Sign Language Recognition: From Traditional Methods to Artificial Intelligence

    Xianwei Jiang1, Yanqiong Zhang1,*, Juan Lei1, Yudong Zhang2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1-40, 2024, DOI:10.32604/cmes.2024.047649

    Abstract Research on Chinese Sign Language (CSL) provides convenience and support for individuals with hearing impairments to communicate and integrate into society. This article reviews the relevant literature on Chinese Sign Language Recognition (CSLR) in the past 20 years. Hidden Markov Models (HMM), Support Vector Machines (SVM), and Dynamic Time Warping (DTW) were found to be the most commonly employed technologies among traditional identification methods. Benefiting from the rapid development of computer vision and artificial intelligence technology, Convolutional Neural Networks (CNN), 3D-CNN, YOLO, Capsule Network (CapsNet) and various deep neural networks have sprung up. Deep Neural Networks (DNNs) and their derived… More >

  • Open Access

    ARTICLE

    Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model

    Kai Wang1, Biao He2,*, Pijush Samui3, Jian Zhou4

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 229-253, 2024, DOI:10.32604/cmes.2024.047569

    Abstract Rock bursts represent a formidable challenge in underground engineering, posing substantial risks to both infrastructure and human safety. These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock, leading to severe seismic events and structural damage. Therefore, the development of reliable prediction models for rock bursts is paramount to mitigating these hazards. This study aims to propose a tree-based model—a Light Gradient Boosting Machine (LightGBM)—to predict the intensity of rock bursts in underground engineering. 322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset, which serves… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Aluminum Alloy Electric Bus Frame Connectors for Enhanced Durability

    Wenjun Zhou1,2, Mingzhi Yang1, Qian Peng2, Yong Peng1,*, Kui Wang1, Qiang Xiao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 735-755, 2024, DOI:10.32604/cmes.2024.047258

    Abstract The widespread adoption of aluminum alloy electric buses, known for their energy efficiency and eco-friendliness, faces a challenge due to the aluminum frame’s susceptibility to deformation compared to steel. This issue is further exacerbated by the stringent requirements imposed by the flammability and explosiveness of batteries, necessitating robust frame protection. Our study aims to optimize the connectors of aluminum alloy bus frames, emphasizing durability, energy efficiency, and safety. This research delves into Multi-Objective Coordinated Optimization (MCO) techniques for lightweight design in aluminum alloy bus body connectors. Our goal is to enhance lightweighting, reinforce energy absorption, and improve deformation resistance in… More >

  • Open Access

    ARTICLE

    Prospect Theory Based Individual Irrationality Modelling and Behavior Inducement in Pandemic Control

    Wenxiang Dong, H. Vicky Zhao*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 139-170, 2024, DOI:10.32604/cmes.2024.047156

    Abstract Understanding and modeling individuals’ behaviors during epidemics is crucial for effective epidemic control. However, existing research ignores the impact of users’ irrationality on decision-making in the epidemic. Meanwhile, existing disease control methods often assume users’ full compliance with measures like mandatory isolation, which does not align with the actual situation. To address these issues, this paper proposes a prospect theory-based framework to model users’ decision-making process in epidemics and analyzes how irrationality affects individuals’ behaviors and epidemic dynamics. According to the analysis results, irrationality tends to prompt conservative behaviors when the infection risk is low but encourages risk-seeking behaviors when… More >

  • Open Access

    ARTICLE

    An Approach for Human Posture Recognition Based on the Fusion PSE-CNN-BiGRU Model

    Xianghong Cao, Xinyu Wang, Xin Geng*, Donghui Wu, Houru An

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 385-408, 2024, DOI:10.32604/cmes.2024.046752

    Abstract This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit (PSE-CNN-BiGRU) fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments. Firstly, the deep convolutional network is integrated with the Mediapipe framework to extract high-precision, multi-dimensional information from the key points of the human skeleton, thereby obtaining a human posture feature set. Thereafter, a double-layer BiGRU algorithm is utilized to extract multi-layer, bidirectional temporal features from the human posture feature set, and a… More >

  • Open Access

    ARTICLE

    The Lambert-G Family: Properties, Inference, and Applications

    Jamal N. Al Abbasi1, Ahmed Z. Afify2,*, Badr Alnssyan3,*, Mustafa S. Shama4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 513-536, 2024, DOI:10.32604/cmes.2024.046533

    Abstract This study proposes a new flexible family of distributions called the Lambert-G family. The Lambert family is very flexible and exhibits desirable properties. Its three-parameter special sub-models provide all significant monotonic and non-monotonic failure rates. A special sub-model of the Lambert family called the Lambert-Lomax (LL) distribution is investigated. General expressions for the LL statistical properties are established. Characterizations of the LL distribution are addressed mathematically based on its hazard function. The estimation of the LL parameters is discussed using six estimation methods. The performance of this estimation method is explored through simulation experiments. The usefulness and flexibility of the… More >

  • Open Access

    ARTICLE

    Modularized and Parametric Modeling Technology for Finite Element Simulations of Underground Engineering under Complicated Geological Conditions

    Jiaqi Wu1, Li Zhuo1,*, Jianliang Pei1, Yao Li2, Hongqiang Xie1, Jiaming Wu1, Huaizhong Liu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 621-645, 2024, DOI:10.32604/cmes.2024.046398

    Abstract The surrounding geological conditions and supporting structures of underground engineering are often updated during construction, and these updates require repeated numerical modeling. To improve the numerical modeling efficiency of underground engineering, a modularized and parametric modeling cloud server is developed by using Python codes. The basic framework of the cloud server is as follows: input the modeling parameters into the web platform, implement Rhino software and FLAC3D software to model and run simulations in the cloud server, and return the simulation results to the web platform. The modeling program can automatically generate instructions that can run the modeling process in… More >

Displaying 21-30 on page 3 of 3385. Per Page