Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Modern Mobile Malware Detection Framework Using Machine Learning and Random Forest Algorithm

    Mohammad Ababneh*, Ayat Al-Droos, Ammar El-Hassan

    Computer Systems Science and Engineering, Vol.48, No.5, pp. 1171-1191, 2024, DOI:10.32604/csse.2024.052875 - 13 September 2024

    Abstract With the high level of proliferation of connected mobile devices, the risk of intrusion becomes higher. Artificial Intelligence (AI) and Machine Learning (ML) algorithms started to feature in protection software and showed effective results. These algorithms are nonetheless hindered by the lack of rich datasets and compounded by the appearance of new categories of malware such that the race between attackers’ malware, especially with the assistance of Artificial Intelligence tools and protection solutions makes these systems and frameworks lose effectiveness quickly. In this article, we present a framework for mobile malware detection based on a… More >

  • Open Access

    ARTICLE

    A Learning Model to Detect Android C&C Applications Using Hybrid Analysis

    Attia Qammar1, Ahmad Karim1,*, Yasser Alharbi2, Mohammad Alsaffar2, Abdullah Alharbi2

    Computer Systems Science and Engineering, Vol.43, No.3, pp. 915-930, 2022, DOI:10.32604/csse.2022.023652 - 09 May 2022

    Abstract Smartphone devices particularly Android devices are in use by billions of people everywhere in the world. Similarly, this increasing rate attracts mobile botnet attacks which is a network of interconnected nodes operated through the command and control (C&C) method to expand malicious activities. At present, mobile botnet attacks launched the Distributed denial of services (DDoS) that causes to steal of sensitive data, remote access, and spam generation, etc. Consequently, various approaches are defined in the literature to detect mobile botnet attacks using static or dynamic analysis. In this paper, a novel hybrid model, the combination More >

  • Open Access

    ARTICLE

    Deobfuscating Mobile Malware for Identifying Concealed Behaviors

    Dongho Lee, Geochang Jeon, Sunjun Lee, Haehyun Cho*

    CMC-Computers, Materials & Continua, Vol.72, No.3, pp. 5909-5923, 2022, DOI:10.32604/cmc.2022.026395 - 21 April 2022

    Abstract The smart phone market is continuously increasing and there are more than 6 billion of smart phone users worldwide with the aid of the 5G technology. Among them Android occupies 87% of the market share. Naturally, the widespread Android smartphones has drawn the attention of the attackers who implement and spread malware. Consequently, currently the number of malware targeting Android mobile phones is ever increasing. Therefore, it is a critical task to find and detect malicious behaviors of malware in a timely manner. However, unfortunately, attackers use a variety of obfuscation techniques for malware to… More >

Displaying 1-10 on page 1 of 3. Per Page