Umer Sadiq Khan1,2,*, Zhen Liu1,2,*, Fang Xu1,2, Muhib Ullah Khan3,4, Lerui Chen5, Touseef Ahmed Khan4,6, Muhammad Kashif Khattak7, Yuquan Zhang8
CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3323-3348, 2024, DOI:10.32604/cmc.2024.046094
- 26 March 2024
Abstract Image classification and unsupervised image segmentation can be achieved using the Gaussian mixture model. Although the Gaussian mixture model enhances the flexibility of image segmentation, it does not reflect spatial information and is sensitive to the segmentation parameter. In this study, we first present an efficient algorithm that incorporates spatial information into the Gaussian mixture model (GMM) without parameter estimation. The proposed model highlights the residual region with considerable information and constructs color saliency. Second, we incorporate the content-based color saliency as spatial information in the Gaussian mixture model. The segmentation is performed by clustering… More >