Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Reinforcement Learning Based Quantization Strategy Optimal Assignment Algorithm for Mixed Precision

    Yuejiao Wang, Zhong Ma*, Chaojie Yang, Yu Yang, Lu Wei

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 819-836, 2024, DOI:10.32604/cmc.2024.047108 - 25 April 2024

    Abstract The quantization algorithm compresses the original network by reducing the numerical bit width of the model, which improves the computation speed. Because different layers have different redundancy and sensitivity to data bit width. Reducing the data bit width will result in a loss of accuracy. Therefore, it is difficult to determine the optimal bit width for different parts of the network with guaranteed accuracy. Mixed precision quantization can effectively reduce the amount of computation while keeping the model accuracy basically unchanged. In this paper, a hardware-aware mixed precision quantization strategy optimal assignment algorithm adapted to… More >

  • Open Access

    ARTICLE

    A Novel Mixed Precision Distributed TPU GAN for Accelerated Learning Curve

    Aswathy Ravikumar, Harini Sriraman*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 563-578, 2023, DOI:10.32604/csse.2023.034710 - 20 January 2023

    Abstract Deep neural networks are gaining importance and popularity in applications and services. Due to the enormous number of learnable parameters and datasets, the training of neural networks is computationally costly. Parallel and distributed computation-based strategies are used to accelerate this training process. Generative Adversarial Networks (GAN) are a recent technological achievement in deep learning. These generative models are computationally expensive because a GAN consists of two neural networks and trains on enormous datasets. Typically, a GAN is trained on a single server. Conventional deep learning accelerator designs are challenged by the unique properties of GAN,… More >

Displaying 1-10 on page 1 of 2. Per Page