Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Selecting Dominant Features for the Prediction of Early-Stage Chronic Kidney Disease

    Vinothini Arumugam*, S. Baghavathi Priya

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 947-959, 2022, DOI:10.32604/iasc.2022.018654 - 22 September 2021

    Abstract Nowadays, Chronic Kidney Disease (CKD) is one of the vigorous public health diseases. Hence, early detection of the disease may reduce the severity of its consequences. Besides, medical databases of any disease diagnosis may be collected from the blood test, urine test, and patient history. Nevertheless, medical information retrieved from various sources is diverse. Therefore, it is unadaptable to evaluate numerical and nominal features using the same feature selection algorithm, which may lead to fallacious analysis. Applying machine learning techniques over the medical database is a common way to help feature identification for CKD prediction.… More >

  • Open Access

    ARTICLE

    An Optimized Framework for Surgical Team Selection

    Hemant Petwal*, Rinkle Rani

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2563-2582, 2021, DOI:10.32604/cmc.2021.017548 - 21 July 2021

    Abstract In the healthcare system, a surgical team is a unit of experienced personnel who provide medical care to surgical patients during surgery. Selecting a surgical team is challenging for a multispecialty hospital as the performance of its members affects the efficiency and reliability of the hospital’s patient care. The effectiveness of a surgical team depends not only on its individual members but also on the coordination among them. In this paper, we addressed the challenges of surgical team selection faced by a multispecialty hospital and proposed a decision-making framework for selecting the optimal list of… More >

  • Open Access

    ARTICLE

    Outlier Detection of Mixed Data Based on Neighborhood Combinatorial Entropy

    Lina Wang1,2,*, Qixiang Zhang1, Xiling Niu1, Yongjun Ren3, Jinyue Xia4

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 1765-1781, 2021, DOI:10.32604/cmc.2021.017516 - 21 July 2021

    Abstract Outlier detection is a key research area in data mining technologies, as outlier detection can identify data inconsistent within a data set. Outlier detection aims to find an abnormal data size from a large data size and has been applied in many fields including fraud detection, network intrusion detection, disaster prediction, medical diagnosis, public security, and image processing. While outlier detection has been widely applied in real systems, its effectiveness is challenged by higher dimensions and redundant data attributes, leading to detection errors and complicated calculations. The prevalence of mixed data is a current issue… More >

  • Open Access

    ARTICLE

    The Volatility of High-Yield Bonds Using Mixed Data Sampling Methods

    Maojun Zhang1,2, Jiajin Yao1, Zhonghang Xia3, Jiangxia Nan1,*, Cuiqing Zhang1

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1233-1244, 2019, DOI:10.32604/cmc.2019.06118

    Abstract It is well known that economic policy uncertainty prompts the volatility of the high-yield bond market. However, the correlation between economic policy uncertainty and volatility of high-yield bonds is still not clear. In this paper, we employ GARCH-MIDAS models to investigate their correlation with US economic policy uncertainty index and S&P high-yield bond index. The empirical studies show that mixed volatility models can effectively capture the realized volatility of high-yield bonds, and economic policy uncertainty and macroeconomic factors have significant effects on the long-term component of high-yield bonds volatility. More >

Displaying 1-10 on page 1 of 4. Per Page