Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (79)
  • Open Access

    ARTICLE

    AdipoRon Promotes Mitochondrial Ca2+ Overload and Apoptosis in Hepatocellular Carcinoma Cells by Activating the PLC-IP3-IP3R Signaling Pathway

    Zongmeng Zhang1,2,#, Cai Chen3,#, Shaorui Rui3, Conghan Li3, Jiong Gu3,*, Liang He3,*

    BIOCELL, Vol.50, No.1, 2026, DOI:10.32604/biocell.2025.073085 - 23 January 2026

    Abstract Objective: Hepatocellular carcinoma (HCC) ranks among the most prevalent malignant tumors globally. Metabolically associated fatty liver disease is a significant risk factor for HCC. Adiponectin, a key regulatory protein in glucolipid metabolism, presents potential as an anti-tumor target in HCC cells. The study focused on evaluating the anti-HCC properties of AdipoRon, an agonist of the adiponectin receptor. Method: Cell viability and proliferation were assessed using the cell counting kit-8 and colony formation assays, respectively. AdipoRon’s effect on HCC cell damage was evaluated via flow cytometry, apoptosis, and (lactate dehydrogenase) LDH assays. Mitochondrial function was evaluated… More >

  • Open Access

    REVIEW

    Melatonin as a Neuroprotective Agent in Ischemic Stroke: Mechanistic Insights Centralizing Mitochondria as a Potential Therapeutic Target

    Mayuri Shukla1, Soraya Boonmag2, Parichart Boontem1, Piyarat Govitrapong1,*

    BIOCELL, Vol.50, No.1, 2026, DOI:10.32604/biocell.2025.072557 - 23 January 2026

    Abstract Ischemic stroke is one of the major causes of long-term disability and mortality worldwide. It results from an interruption in the cerebral blood flow, triggering a cascade of detrimental events like oxidative stress, mitochondrial dysfunction, neuroinflammation, excitotoxicity, and apoptosis, causing neuronal injury and cellular death. Melatonin, a pleiotropic indoleamine produced by the pineal gland, has multifaceted neuroprotective effects on stroke pathophysiology. Interestingly, the serum melatonin levels are associated with peroxidation and antioxidant status, along with mortality score in patients with severe middle cerebral artery infarction. Melatonin exhibits strong antioxidant, anti-inflammatory, and anti-apoptotic properties and preserves More >

  • Open Access

    ARTICLE

    Revealing the Roles of the SH3GLB1-Hydrogen Peroxide Axis in Glioblastoma Multiforme Cells

    Wei-Ting Hsueh1,#, Kwang-Yu Chang1,2,3,#, Chin-Chuan Tsai4,5, Kuan-Tso Chen5,6, Kuen-Jang Tsai7, Zi-Xuan Hong8, Chan-Chuan Liu2, Jui-Mei Chu2, Li-Ying Qiu2, Yu-Yan Lan8, Chia-Hung Chien8,*

    Oncology Research, Vol.34, No.2, 2026, DOI:10.32604/or.2025.071258 - 19 January 2026

    Abstract Objectives: Glioblastoma (GBM) is a prevalent malignant brain tumor prone to drug resistance. We previously found a strong correlation between SH3 domain GRB2-like endophilin B1 (SH3GLB1) and superoxide dismutase 2 (SOD2), which converts O2 to hydrogen peroxide (H2O2). Prior studies show that H2O2 redox signaling is vital for physiological processes and can drive tumor progression. Therefore, we aim to define how H2O2 signaling regulates SH3GLB1 and AKT (protein kinase B) pathways in GBM and to assess whether modulating H2O2 reverses temozolomide (TMZ) resistance. Methods: We used cultured cells and pharmacological inhibitors and activators to confirm the significance of… More > Graphic Abstract

    Revealing the Roles of the SH3GLB1-Hydrogen Peroxide Axis in Glioblastoma Multiforme Cells

  • Open Access

    ARTICLE

    CSRNP1 Promotes Apoptosis and Mitochondrial Dysfunction via ROS-Mediated JNK/p38 MAPK Pathway Activation in Hepatocellular Carcinoma

    Huihui Shi1,#, Lei Chen2,#, Juan Huang3,#, Xuejing Lin2, Lei Huang4, Min Tang4, Kai Lu5,*, Wenchao Wang4,*, Maoling Zhu1,§,*

    Oncology Research, Vol.34, No.1, 2026, DOI:10.32604/or.2025.068737 - 30 December 2025

    Abstract Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality worldwide. This study aimed to identify key genes involved in HCC development and elucidate their molecular mechanisms, with a particular focus on mitochondrial function and apoptosis. Methods: Differential expression analyses were performed across three datasets—The Cancer Genome Atlas (TCGA)-Liver Hepatocellular Carcinoma (LIHC), GSE36076, and GSE95698—to identify overlapping differentially expressed genes (DEGs). A prognostic risk model was then constructed. Cysteine/serine-rich nuclear protein 1 (CSRNP1) expression levels in HCC cell lines were assessed via western blot (WB) and quantitative reverse transcription polymerase chain reaction (qRT-PCR).… More > Graphic Abstract

    <i>CSRNP1</i> Promotes Apoptosis and Mitochondrial Dysfunction via ROS-Mediated JNK/p38 MAPK Pathway Activation in Hepatocellular Carcinoma

  • Open Access

    REVIEW

    Mitochondrial Stress, Melatonin, and Neurodegenerative Diseases: New Nanopharmacological Approaches

    Virna Margarita Martín Giménez1, SebastiáN GarcíA MenéNdez2,3, Luiz Gustavo A. Chuffa4, Vinicius Augusto SimãO4, Russel J. Reiter5, Ramaswamy Sharma6, Walter Balduini7, Carla Gentile8, Walter Manucha2,3,*

    BIOCELL, Vol.49, No.12, pp. 2245-2282, 2025, DOI:10.32604/biocell.2025.071830 - 24 December 2025

    Abstract Neurodegenerative diseases (NDs) such as Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD), and amyotrophic lateral sclerosis (ALS) are characterized by progressive neuronal loss, which is closely linked to mitochondrial dysfunction. These pathologies involve a complex interplay of genetics, protein misfolding, and cellular stress, culminating in impaired energy metabolism, an increase in reactive oxygen species (ROS), and defective mitochondrial quality control. The accumulation of damaged mitochondria and dysregulation of pathways such as the Integrated Stress Response (ISR) are central to the pathogenesis of these conditions. This review explores the critical relationship between mitochondrial stress… More >

  • Open Access

    REVIEW

    Endothelial and Mitochondrial Dysfunction in COPD Pathophysiology: Focus on Homocysteine–L-Carnitine Interplay

    Eduard Belskikh1,*, Yuliya Marsyanova2, Denis Melnikov3, Oleg Uryasev1, Valentina Zvyagina2

    BIOCELL, Vol.49, No.11, pp. 2093-2123, 2025, DOI:10.32604/biocell.2025.069272 - 24 November 2025

    Abstract Elevated homocysteine is a clinically relevant metabolic signal in chronic obstructive pulmonary disease (COPD). Higher circulating levels track with oxidative stress, endothelial dysfunction, mitochondrial impairment, and pulmonary vascular remodeling, rise with disease severity, and may contribute to the excess cardiovascular risk—although effect sizes and causality remain uncertain. This review centers on the homocysteine–carnitine relationship in COPD pathophysiology. Carnitine deficiency, prevalent in COPD, can worsen mitochondrial bioenergetics, promote accumulation of acyl intermediates, and reduce nitric oxide bioavailability via endothelial nitric oxide synthase uncoupling (eNOS). Conversely, restoring carnitine status in experimental and early clinical settings has been… More >

  • Open Access

    REVIEW

    Drug-Induced Insulin Sensitivity Impairments: Potential Involvement of Disturbed Mitochondrial Dynamics and Mitophagy Pathways

    Mutamba Ropafadzo Peace1, Thobeka Madide1,2, Ntethelelo Sibiya1,*

    BIOCELL, Vol.49, No.11, pp. 2069-2091, 2025, DOI:10.32604/biocell.2025.068017 - 24 November 2025

    Abstract The pathogenesis of insulin resistance is influenced by environmental factors, genetic predispositions, and several medications. Various drugs used to manage multiple ailments have been shown to induce insulin resistance, which could lead to Type II Diabetes mellitus (T2DM). Central to drug-induced insulin resistance is mitochondrial dysfunction. Amongst disturbed pathways in drug-induced mitochondrial toxicity is mitophagy, a process that removes dysfunctional mitochondria through the lysosomal pathways to maintain mitochondrial quality. A balance must always be maintained between mitochondrial dynamics and mitophagy, as any alterations may contribute to the pathogenesis of metabolic diseases such as diabetes mellitus.… More >

  • Open Access

    REVIEW

    Mechanistic Insights into the Role of Melatonin in Cancer Cell Chemoresistance

    Russel J. Reiter1,*, Ramaswamy Sharma2,*, Walter Manucha3, Walter Balduini4, Doris Loh5, Demetrios A. Spandidos6, Alejandro Romero7, Vasiliki E. Georgakopoulou8, Wei Zhu9

    BIOCELL, Vol.49, No.11, pp. 2033-2067, 2025, DOI:10.32604/biocell.2025.067661 - 24 November 2025

    Abstract The development of cancer cell resistance to conventional treatments continues to be a major obstacle in the successful treatment of tumors of many types. The discovery of a highly efficient direct and indirect free radical scavenger, melatonin, in the mitochondrial matrix may be a factor in determining both the occurrence of cancer cell drug insensitivity as well as radioresistance. This relates to two of the known hallmarks of cancer, i.e., exaggerated free radical generation in the mitochondria and the development of Warburg type metabolism (glycolysis). The hypothesis elaborated in this report assumes that the high… More >

  • Open Access

    REVIEW

    Mitochondrial Dysfunction in Parkinson’s Disease: Is Impaired Deuterium Depleted Nutrient Supply by Gut Microbes a Primary Factor?

    Stephanie Seneff1,*, Greg Nigh2, Anthony M. Kyriakopoulos3,4

    BIOCELL, Vol.49, No.9, pp. 1545-1572, 2025, DOI:10.32604/biocell.2025.066687 - 25 September 2025

    Abstract Deuterium is a heavy isotope of hydrogen, with an extra neutron, endowing it with unique biophysical and biochemical properties compared to hydrogen. The ATPase pumps in the mitochondria depend upon proton motive force to catalyze the reaction that produces ATP. Deuterons disrupt the pumps, inducing excessive reactive oxygen species and decreased ATP synthesis. The aim of this review is to develop a theory that mitochondrial dysfunction due to deuterium overload, systemically, is a primary cause of Parkinson’s disease (PD). The gut microbes supply deuterium-depleted short chain fatty acids (SCFAs) to the colonocytes, particularly butyrate, and… More >

  • Open Access

    REVIEW

    Crosstalk between mitochondrial dysfunction and benign prostatic hyperplasia: unraveling the intrinsic mechanisms

    Huan Liu1,#, Yan Li2,#, Jizhang Qiu1, Junchao Zhang1, Huan Lai1, Xinhua Zhang1,*

    Canadian Journal of Urology, Vol.32, No.4, pp. 255-269, 2025, DOI:10.32604/cju.2025.066523 - 29 August 2025

    Abstract Benign prostatic hyperplasia (BPH) represents a prevalent etiology of lower urinary tract symptoms (LUTS) in the male population, clinically defined by a non-malignant proliferation of prostatic tissue. While BPH exhibits a high prevalence among older male populations globally, the precise underlying mechanisms contributing to its development remain incompletely elucidated. Mitochondria, essential organelles within eukaryotic cells, are critical for cellular bioenergetics, the regulation of reactive oxygen species (ROS) generation, and the modulation of cell death pathways. The maintenance of mitochondrial homeostasis involves a complex interplay of processes. By synthesizing previous literature, this review discusses mitochondrial homeostasis More >

Displaying 1-10 on page 1 of 79. Per Page