Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Missing Value Imputation for Radar-Derived Time-Series Tracks of Aerial Targets Based on Improved Self-Attention-Based Network

    Zihao Song, Yan Zhou*, Wei Cheng, Futai Liang, Chenhao Zhang

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3349-3376, 2024, DOI:10.32604/cmc.2024.047034 - 26 March 2024

    Abstract The frequent missing values in radar-derived time-series tracks of aerial targets (RTT-AT) lead to significant challenges in subsequent data-driven tasks. However, the majority of imputation research focuses on random missing (RM) that differs significantly from common missing patterns of RTT-AT. The method for solving the RM may experience performance degradation or failure when applied to RTT-AT imputation. Conventional autoregressive deep learning methods are prone to error accumulation and long-term dependency loss. In this paper, a non-autoregressive imputation model that addresses the issue of missing value imputation for two common missing patterns in RTT-AT is proposed.… More >

  • Open Access

    ARTICLE

    Improving Prediction of Chronic Kidney Disease Using KNN Imputed SMOTE Features and TrioNet Model

    Nazik Alturki1, Abdulaziz Altamimi2, Muhammad Umer3,*, Oumaima Saidani1, Amal Alshardan1, Shtwai Alsubai4, Marwan Omar5, Imran Ashraf6,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3513-3534, 2024, DOI:10.32604/cmes.2023.045868 - 11 March 2024

    Abstract Chronic kidney disease (CKD) is a major health concern today, requiring early and accurate diagnosis. Machine learning has emerged as a powerful tool for disease detection, and medical professionals are increasingly using ML classifier algorithms to identify CKD early. This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California, UC Irvine Machine Learning repository. The research introduces TrioNet, an ensemble model combining extreme gradient boosting, random forest, and extra tree classifier, which excels in providing highly accurate predictions for CKD. Furthermore, K nearest neighbor (KNN) More >

  • Open Access

    ARTICLE

    Missing Value Imputation Model Based on Adversarial Autoencoder Using Spatiotemporal Feature Extraction

    Dong-Hoon Shin1, Seo-El Lee2, Byeong-Uk Jeon1, Kyungyong Chung3,*

    Intelligent Automation & Soft Computing, Vol.37, No.2, pp. 1925-1940, 2023, DOI:10.32604/iasc.2023.039317 - 21 June 2023

    Abstract Recently, the importance of data analysis has increased significantly due to the rapid data increase. In particular, vehicle communication data, considered a significant challenge in Intelligent Transportation Systems (ITS), has spatiotemporal characteristics and many missing values. High missing values in data lead to the decreased predictive performance of models. Existing missing value imputation models ignore the topology of transportation networks due to the structural connection of road networks, although physical distances are close in spatiotemporal image data. Additionally, the learning process of missing value imputation models requires complete data, but there are limitations in securing More >

  • Open Access

    ARTICLE

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118 - 31 March 2023

    Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia.… More >

  • Open Access

    ARTICLE

    Towards Improving Predictive Statistical Learning Model Accuracy by Enhancing Learning Technique

    Ali Algarni1, Mahmoud Ragab2,3,4,*, Wardah Alamri5, Samih M. Mostafa6

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 303-318, 2022, DOI:10.32604/csse.2022.022152 - 02 December 2021

    Abstract The accuracy of the statistical learning model depends on the learning technique used which in turn depends on the dataset’s values. In most research studies, the existence of missing values (MVs) is a vital problem. In addition, any dataset with MVs cannot be used for further analysis or with any data driven tool especially when the percentage of MVs are high. In this paper, the authors propose a novel algorithm for dealing with MVs depending on the feature selection (FS) of similarity classifier with fuzzy entropy measure. The proposed algorithm imputes MVs in cumulative order.… More >

  • Open Access

    ARTICLE

    Hybrid Online Model for Predicting Diabetes Mellitus

    C. Mallika1,*, S. Selvamuthukumaran2

    Intelligent Automation & Soft Computing, Vol.31, No.3, pp. 1873-1885, 2022, DOI:10.32604/iasc.2022.020543 - 09 October 2021

    Abstract Modern healthcare systems have become smart by synergizing the potentials of wireless sensors, the medical Internet of things, and big data science to provide better patient care while decreasing medical expenses. Large healthcare organizations generate and accumulate an incredible volume of data continuously. The already daunting volume of medical information has a massive amount of diagnostic features and logged details of patients for certain diseases such as diabetes. Diabetes mellitus has emerged as along-haul fatal disease across the globe and particularly in developing countries. Exact and early diagnosis of diabetes from big medical data is… More >

  • Open Access

    ARTICLE

    Improved KNN Imputation for Missing Values in Gene Expression Data

    Phimmarin Keerin1, Tossapon Boongoen2,*

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 4009-4025, 2022, DOI:10.32604/cmc.2022.020261 - 27 September 2021

    Abstract The problem of missing values has long been studied by researchers working in areas of data science and bioinformatics, especially the analysis of gene expression data that facilitates an early detection of cancer. Many attempts show improvements made by excluding samples with missing information from the analysis process, while others have tried to fill the gaps with possible values. While the former is simple, the latter safeguards information loss. For that, a neighbour-based (KNN) approach has proven more effective than other global estimators. The paper extends this further by introducing a new summarization method to… More >

  • Open Access

    ARTICLE

    Comparative Variance and Multiple Imputation Used for Missing Values in Land Price DataSet

    Longqing Zhang1, Liping Bai1,*, Xinwei Zhang2, Yanghong Zhang2, Feng Sun2, Changcheng Chen2

    CMC-Computers, Materials & Continua, Vol.61, No.3, pp. 1175-1187, 2019, DOI:10.32604/cmc.2019.06075

    Abstract Based on the two-dimensional relation table, this paper studies the missing values in the sample data of land price of Shunde District of Foshan City. GeoDa software was used to eliminate the insignificant factors by stepwise regression analysis; NORM software was adopted to construct the multiple imputation models; EM algorithm and the augmentation algorithm were applied to fit multiple linear regression equations to construct five different filling datasets. Statistical analysis is performed on the imputation data set in order to calculate the mean and variance of each data set, and the weight is determined according… More >

Displaying 1-10 on page 1 of 8. Per Page