Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (222)
  • Open Access

    ARTICLE

    A New Framework for Scholarship Predictor Using a Machine Learning Approach

    Bushra Kanwal1, Rana Saud Shoukat2, Saif Ur Rehman2,*, Mahwish Kundi3, Tahani AlSaedi4, Abdulrahman Alahmadi4

    Intelligent Automation & Soft Computing, Vol.39, No.5, pp. 829-854, 2024, DOI:10.32604/iasc.2024.054645 - 31 October 2024

    Abstract Education is the base of the survival and growth of any state, but due to resource scarcity, students, particularly at the university level, are forced into a difficult situation. Scholarships are the most significant financial aid mechanisms developed to overcome such obstacles and assist the students in continuing with their higher studies. In this study, the convoluted situation of scholarship eligibility criteria, including parental income, responsibilities, and academic achievements, is addressed. In an attempt to maximize the scholarship selection process, numerous machine learning algorithms, including Support Vector Machines, Neural Networks, K-Nearest Neighbors, and the C4.5… More >

  • Open Access

    ARTICLE

    Data-Driven Decision-Making for Bank Target Marketing Using Supervised Learning Classifiers on Imbalanced Big Data

    Fahim Nasir1, Abdulghani Ali Ahmed1,*, Mehmet Sabir Kiraz1, Iryna Yevseyeva1, Mubarak Saif2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 1703-1728, 2024, DOI:10.32604/cmc.2024.055192 - 15 October 2024

    Abstract Integrating machine learning and data mining is crucial for processing big data and extracting valuable insights to enhance decision-making. However, imbalanced target variables within big data present technical challenges that hinder the performance of supervised learning classifiers on key evaluation metrics, limiting their overall effectiveness. This study presents a comprehensive review of both common and recently developed Supervised Learning Classifiers (SLCs) and evaluates their performance in data-driven decision-making. The evaluation uses various metrics, with a particular focus on the Harmonic Mean Score (F-1 score) on an imbalanced real-world bank target marketing dataset. The findings indicate… More >

  • Open Access

    ARTICLE

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

    Khawaja Tahir Mehmood1,2,*, Shahid Atiq1, Intisar Ali Sajjad3, Muhammad Majid Hussain4, Malik M. Abdul Basit2

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1673-1708, 2024, DOI:10.32604/cmes.2024.053903 - 27 September 2024

    Abstract Software-Defined Networking (SDN), with segregated data and control planes, provides faster data routing, stability, and enhanced quality metrics, such as throughput (Th), maximum available bandwidth (Bd(max)), data transfer (DTransfer), and reduction in end-to-end delay (D(E-E)). This paper explores the critical work of deploying SDN in large­scale Data Center Networks (DCNs) to enhance its Quality of Service (QoS) parameters, using logically distributed control configurations. There is a noticeable increase in Delay(E-E) when adopting SDN with a unified (single) control structure in big DCNs to handle Hypertext Transfer Protocol (HTTP) requests causing a reduction in network quality parameters (Bd(max), Th, DTransfer, D(E-E),… More > Graphic Abstract

    Examining the Quality Metrics of a Communication Network with Distributed Software-Defined Networking Architecture

  • Open Access

    REVIEW

    Survey on Video Security: Examining Threats, Challenges, and Future Trends

    Ali Asghar1,#, Amna Shifa2,#, Mamoona Naveed Asghar2,*

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 3591-3635, 2024, DOI:10.32604/cmc.2024.054654 - 12 September 2024

    Abstract Videos represent the most prevailing form of digital media for communication, information dissemination, and monitoring. However, their widespread use has increased the risks of unauthorised access and manipulation, posing significant challenges. In response, various protection approaches have been developed to secure, authenticate, and ensure the integrity of digital videos. This study provides a comprehensive survey of the challenges associated with maintaining the confidentiality, integrity, and availability of video content, and examining how it can be manipulated. It then investigates current developments in the field of video security by exploring two critical research questions. First, it… More >

  • Open Access

    ARTICLE

    A Quarterly High RFM Mining Algorithm for Big Data Management

    Cuiwei Peng1, Jiahui Chen2,*, Shicheng Wan3, Guotao Xu4

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4341-4360, 2024, DOI:10.32604/cmc.2024.054109 - 12 September 2024

    Abstract In today’s highly competitive retail industry, offline stores face increasing pressure on profitability. They hope to improve their ability in shelf management with the help of big data technology. For this, on-shelf availability is an essential indicator of shelf data management and closely relates to customer purchase behavior. RFM (recency, frequency, and monetary) pattern mining is a powerful tool to evaluate the value of customer behavior. However, the existing RFM pattern mining algorithms do not consider the quarterly nature of goods, resulting in unreasonable shelf availability and difficulty in profit-making. To solve this problem, we… More >

  • Open Access

    ARTICLE

    Software Vulnerability Mining and Analysis Based on Deep Learning

    Shibin Zhao*, Junhu Zhu, Jianshan Peng

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 3263-3287, 2024, DOI:10.32604/cmc.2024.041949 - 15 August 2024

    Abstract In recent years, the rapid development of computer software has led to numerous security problems, particularly software vulnerabilities. These flaws can cause significant harm to users’ privacy and property. Current security defect detection technology relies on manual or professional reasoning, leading to missed detection and high false detection rates. Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes, reducing missed alarms and false alarms. So, this project aims to study Java source code defect detection methods for defects like null pointer… More >

  • Open Access

    ARTICLE

    A Novel Method for Determining the Void Fraction in Gas-Liquid Multi-Phase Systems Using a Dynamic Conductivity Probe

    Xiaochu Luo1, Xiaobing Qi2, Zhao Luo3, Zhonghao Li4, Ruiquan Liao1, Xingkai Zhang1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.6, pp. 1233-1249, 2024, DOI:10.32604/fdmp.2023.045737 - 27 June 2024

    Abstract Conventional conductivity methods for measuring the void fraction in gas-liquid multiphase systems are typically affected by accuracy problems due to the presence of fluid flow and salinity. This study presents a novel approach for determining the void fraction based on a reciprocating dynamic conductivity probe used to measure the liquid film thickness under forced annular-flow conditions. The measurement system comprises a cyclone, a conductivity probe, a probe reciprocating device, and a data acquisition and processing system. This method ensures that the flow pattern is adjusted to a forced annular flow, thereby minimizing the influence of More >

  • Open Access

    ARTICLE

    Research on Demand Response Potential of Adjustable Loads in Demand Response Scenarios

    Zhishuo Zhang, Xinhui Du*, Yaoke Shang, Jingshu Zhang, Wei Zhao, Jia Su

    Energy Engineering, Vol.121, No.6, pp. 1577-1605, 2024, DOI:10.32604/ee.2024.047706 - 21 May 2024

    Abstract To address the issues of limited demand response data, low generalization of demand response potential evaluation, and poor demand response effect, the article proposes a demand response potential feature extraction and prediction model based on data mining and a demand response potential assessment model for adjustable loads in demand response scenarios based on subjective and objective weight analysis. Firstly, based on the demand response process and demand response behavior, obtain demand response characteristics that characterize the process and behavior. Secondly, establish a feature extraction and prediction model based on data mining, including similar day clustering,… More >

  • Open Access

    ARTICLE

    Forecasting the Academic Performance by Leveraging Educational Data Mining

    Mozamel M. Saeed*

    Intelligent Automation & Soft Computing, Vol.39, No.2, pp. 213-231, 2024, DOI:10.32604/iasc.2024.043020 - 21 May 2024

    Abstract The study aims to recognize how efficiently Educational Data Mining (EDM) integrates into Artificial Intelligence (AI) to develop skills for predicting students’ performance. The study used a survey questionnaire and collected data from 300 undergraduate students of Al Neelain University. The first step’s initial population placements were created using Particle Swarm Optimization (PSO). Then, using adaptive feature space search, Educational Grey Wolf Optimization (EGWO) was employed to choose the optimal attribute combination. The second stage uses the SVM classifier to forecast classification accuracy. Different classifiers were utilized to evaluate the performance of students. According to… More >

  • Open Access

    ARTICLE

    Binary Program Vulnerability Mining Based on Neural Network

    Zhenhui Li1, Shuangping Xing1, Lin Yu1, Huiping Li1, Fan Zhou1, Guangqiang Yin1, Xikai Tang2, Zhiguo Wang1,*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1861-1879, 2024, DOI:10.32604/cmc.2023.046595 - 27 February 2024

    Abstract Software security analysts typically only have access to the executable program and cannot directly access the source code of the program. This poses significant challenges to security analysis. While it is crucial to identify vulnerabilities in such non-source code programs, there exists a limited set of generalized tools due to the low versatility of current vulnerability mining methods. However, these tools suffer from some shortcomings. In terms of targeted fuzzing, the path searching for target points is not streamlined enough, and the completely random testing leads to an excessively large search space. Additionally, when it… More >

Displaying 1-10 on page 1 of 222. Per Page