Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Thermoelastic Structural Topology Optimization Based on Moving Morphable Components Framework

    Jun Yan1,3, Qi Xu1, Zhirui Fan1, Zunyi Duan2,*, Hongze Du1, Dongling Geng1

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.3, pp. 1179-1196, 2021, DOI:10.32604/cmes.2021.016950 - 11 August 2021

    Abstract This study investigates structural topology optimization of thermoelastic structures considering two kinds of objectives of minimum structural compliance and elastic strain energy with a specified available volume constraint. To explicitly express the configuration evolution in the structural topology optimization under combination of mechanical and thermal load conditions, the moving morphable components (MMC) framework is adopted. Based on the characteristics of the MMC framework, the number of design variables can be reduced substantially. Corresponding optimization formulation in the MMC topology optimization framework and numerical solution procedures are developed for several numerical examples. Different optimization results are More >

  • Open Access

    ARTICLE

    Analysis of Square-shaped Crack in Layered Halfspace Subject to Uniform Loading over Rectangular Surface Area

    H. T. Xiao1,2,3, Y. Y. Xie1,2, Z. Q. Yue4

    CMES-Computer Modeling in Engineering & Sciences, Vol.109-110, No.1, pp. 55-80, 2015, DOI:10.3970/cmes.2015.109.055

    Abstract This paper examines the problem of a square-shaped crack embedded in a layered half-space whose external surface is subject to a uniform loading over a rectangular area. Two novel numerical methods and the superposition principle in fracture mechanics are employed for the analysis of the crack problem. The numerical methods are based on the fundamental solution of a multilayered elastic medium and are, respectively, applied to calculate the stress fields of layered halfspace without cracks and the discontinuous displacements of crack surfaces in layered halfspace. The stress intensity factor (SIF) values are calculated using discontinuous More >

Displaying 1-10 on page 1 of 2. Per Page