Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Abaca Fiber as a Potential Reinforcer for Acoustic Absorption Material at Middle-High Frequencies

    Susilo Indrawati*, Lila Yuwana, Suyatno, Mochamad Zainuri, Darminto*

    Journal of Renewable Materials, Vol.12, No.5, pp. 909-921, 2024, DOI:10.32604/jrm.2024.048452

    Abstract Recently, abaca fibers have become the focus of specialized research due to their intriguing characteristics, with their outstanding mechanical properties being a particularly notable. In the conducted study, the abaca fibers underwent a preliminary treatment process involving an alkaline solution, which was composed of 0.5% sodium hydroxide (NaOH) and 50% acetic acid (CHCOOH). This process entailed immersing each fiber in the solution for a period of one hour. This treatment led to a 52.36% reduction in lignin content compared to the levels before treatment, resulting in a dramatic decrease in the full width at half… More > Graphic Abstract

    Abaca Fiber as a Potential Reinforcer for Acoustic Absorption Material at Middle-High Frequencies

  • Open Access

    ARTICLE

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

    Mohammad Javad SheikhMozafari*

    Sound & Vibration, Vol.58, pp. 81-100, 2024, DOI:10.32604/sv.2024.048897

    Abstract Mitigating low-frequency noise poses a significant challenge for acoustic engineers, due to their long wavelength, with conventional porous sound absorbers showing limitations in attenuating such noise. An effective strategy involves combining porous materials with micro-perforated plates (MPP) to address this issue. Given the significant impact of structural variables like panel thickness, hole diameter, and air gap on the acoustic characteristics of MPP, achieving the optimal condition demands numerous sample iterations. The impedance tube’s considerable expense for sound absorption measurement and the substantial cost involved in fabricating each sample using a 3D printer underscore the advantage… More > Graphic Abstract

    Enhancing Sound Absorption in Micro-Perforated Panel and Porous Material Composite in Low Frequencies: A Numerical Study Using FEM

Displaying 1-10 on page 1 of 2. Per Page