Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (21)
  • Open Access

    PROCEEDINGS

    Refined Microstructures and Enhanced Strength of In-Situ TiBw/Ti-6.5Al-2.5Zr-1Mo-1V Composites by Selective Laser Melting

    Qi An1,*, Lihua Cui1, Lujun Huang1, Lin Geng1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.30, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.011973

    Abstract Ti-6.5Al-2.5Zr-1Mo-1V alloy is a near α titanium alloy, which has been widely used in aerospace fields due to its low density, high specific strength, good corrosion resistance and high-temperature durability. To further improve the strength and high-temperature durability of Ti-6.5Al-2.5Zr-1Mo-1V complex components, the spherical Ti-6.5Al-2.5Zr-1Mo-1V alloy powder with a particle size of 15~53 μm and TiB2 powder with a particle size of 0.5~1 μm were used to fabricate in-situ TiBw reinforced Ti-6.5Al-2.5Zr-1Mo-1V composites through low energy ball milling and selective laser melting (SLM). The results show that the TiB whiskers are uniformly distributed in the More >

  • Open Access

    PROCEEDINGS

    The Simulation of Microstructures and Mechanical Properties in Wire Arc Additive Manufacturing

    Zhao Zhang1,*, Xiang Gao1, Yifei Wang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-1, 2024, DOI:10.32604/icces.2024.012115

    Abstract Wire arc additive manufacturing (WAAM) reveals its high efficiency for the fabrications in comparison with laser additive manufacturing. To reveal the relationship between arc settings and the microstructural evolutions, phase field model and Monte Carlo model are established for the simulation of the microstructural evolutions and dislocation dynamics model is established for the simulation of the anisotropic properties in WAAM. Numerical results are compared with Experiments to validate the proposed models. The length/width ratio of the formed grains in solidification becomes smaller when the scanning speed is decreased or the input powder is increased. The… More >

  • Open Access

    PROCEEDINGS

    3D Printing of Overhanging Microstructures for Tunable Liquid Wettability

    Xiaojiang Liu1,*, Zhongze Gu1, Kun Zhou2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.3, pp. 1-2, 2024, DOI:10.32604/icces.2024.011320

    Abstract Surfaces with overhanging microstructures play an essential role in surface wettability. Typically, surfaces with tightly-distributed multiply symmetric re-entrant microstructures enable the liquid suspension toward water, oil, and even n-perfluorooctane, whose surface tension is as low as 12.0 mN/m [1-4]. In contrast, surfaces with asymmetric re-entrant microstructures are favorable for unidirectional liquid spreading, where the liquids exhibit a small contact angle on the surfaces [5]. These fantastic wettability behaviors can be attributed to three-dimensional (3D) features of the overhanging microstructures, where the edge effect and Laplace pressure difference are generated on the overhanging microstructures. Based on… More >

  • Open Access

    ARTICLE

    Concurrent Two–Scale Topology Optimization of Thermoelastic Structures Using a M–VCUT Level Set Based Model of Microstructures

    Jin Zhou, Minjie Shao*, Ye Tian, Qi Xia*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1327-1345, 2024, DOI:10.32604/cmes.2024.054059 - 27 September 2024

    Abstract By analyzing the results of compliance minimization of thermoelastic structures, we observed that microstructures play an important role in this optimization problem. Then, we propose to use a multiple variable cutting (M–VCUT) level set-based model of microstructures to solve the concurrent two–scale topology optimization of thermoelastic structures. A microstructure is obtained by combining multiple virtual microstructures that are derived respectively from multiple microstructure prototypes, thus giving more diversity of microstructure and more flexibility in design optimization. The effective mechanical properties of microstructures are computed in an off-line phase by using the homogenization method, and then More >

  • Open Access

    ARTICLE

    Topology Optimization of Metamaterial Microstructures for Negative Poisson’s Ratio under Large Deformation Using a Gradient-Free Method

    Weida Wu, Yiqiang Wang, Zhonghao Gao, Pai Liu*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2001-2026, 2024, DOI:10.32604/cmes.2023.046670 - 29 January 2024

    Abstract Negative Poisson’s ratio (NPR) metamaterials are attractive for their unique mechanical behaviors and potential applications in deformation control and energy absorption. However, when subjected to significant stretching, NPR metamaterials designed under small strain assumption may experience a rapid degradation in NPR performance. To address this issue, this study aims to design metamaterials maintaining a targeted NPR under large deformation by taking advantage of the geometry nonlinearity mechanism. A representative periodic unit cell is modeled considering geometry nonlinearity, and its topology is designed using a gradient-free method. The unit cell microstructural topologies are described with the… More >

  • Open Access

    ARTICLE

    Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model

    Chenxi Xiu1,2,*, Xihua Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2305-2338, 2024, DOI:10.32604/cmes.2023.030194 - 15 December 2023

    Abstract This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials. By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information. The microstructures under consideration can be classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria. To investigate failure behaviors, numerical simulations of granular materials with different microstructures are conducted using… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.09096

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is… More >

  • Open Access

    PROCEEDINGS

    Multi-Scale Topology Optimization Method Considering Multiple Structural Performances

    Wenjun Chen1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09095

    Abstract The rapid development of topology optimization has given birth to a large amount of different topology optimization methods, and each of them can manage a class of corresponding engineering problems. However, structures need to meet a variety of requirements in engineering application, such as lightweight and multiple load-bearing performance. To design composite structures that have multiple structural properties, a new multi-scale topology optimization method considering multiple structural performances is proposed in this paper. Based on the fitting functions of the result set and the bisection method, a new method to determine the weight coefficient is… More >

  • Open Access

    PROCEEDINGS

    Magnetic Micropillar Structures for Programmable and Reprogrammable Actuation

    Ke Ni1, Zhengzhi Wang1,2,3,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-2, 2023, DOI:10.32604/icces.2023.09248

    Abstract Stimuli-responsive micropillar structures that can perform dynamics and reversible deformations according to external stimuli have been applied in a wide spectrum of fields, including object manipulation, soft miniature robots, and functional surfaces. However, it remains a challenge to exhibit programmable actuation behaviors for applications that require on-demand deformation response. Herein, a two-step photomask-assisted template casting technique is developed to fabricate a hybrid magnetic micropillar array for programmable actuation. By modulating the spatial distribution of the magnetic nanoparticles within the elastomer micropillars, the bending deformations of the micropillars with different particle distributions can vary near one… More >

  • Open Access

    PROCEEDINGS

    Microstructures and Nanomechanical Properties of Additively Manufactured Metallic Stents

    Enzoh Langi1, Liguo Zhao2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010163

    Abstract Additive manufacturing emerges as an innovative technology to fabricate medical stents used to treat blocked arteries. However, there is a lack of study of underlying microstructure and mechanical properties of additively manufactured stent. In this work, additively manufactured 316L stainless steel stent was investigated, with electrochemical polishing being used to improve the surface finish. Microstructural characterisation was carried out using optical microscopy, scanning electron microscopy, and electron backscatter diffraction. The hardness and elastic modulus were measured using Berkovich nanoindentation, with an emphasis on the effect of grain orientation. In addition, spherical nanoindentation was used to… More >

Displaying 1-10 on page 1 of 21. Per Page