Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Speech Separation Algorithm Using Gated Recurrent Network Based on Microphone Array

    Xiaoyan Zhao1,*, Lin Zhou2, Yue Xie1, Ying Tong1, Jingang Shi3

    Intelligent Automation & Soft Computing, Vol.36, No.3, pp. 3087-3100, 2023, DOI:10.32604/iasc.2023.030180 - 15 March 2023

    Abstract Speech separation is an active research topic that plays an important role in numerous applications, such as speaker recognition, hearing prosthesis, and autonomous robots. Many algorithms have been put forward to improve separation performance. However, speech separation in reverberant noisy environment is still a challenging task. To address this, a novel speech separation algorithm using gate recurrent unit (GRU) network based on microphone array has been proposed in this paper. The main aim of the proposed algorithm is to improve the separation performance and reduce the computational cost. The proposed algorithm extracts the sub-band steered… More >

  • Open Access

    ARTICLE

    Microphone Array-Based Sound Source Localization Using Convolutional Residual Network

    Ziyi Wang1, Xiaoyan Zhao1,*, Hongjun Rong1, Ying Tong1, Jingang Shi2

    Journal of New Media, Vol.4, No.3, pp. 145-153, 2022, DOI:10.32604/jnm.2022.030178 - 13 June 2022

    Abstract Microphone array-based sound source localization (SSL) is widely used in a variety of occasions such as video conferencing, robotic hearing, speech enhancement, speech recognition and so on. The traditional SSL methods cannot achieve satisfactory performance in adverse noisy and reverberant environments. In order to improve localization performance, a novel SSL algorithm using convolutional residual network (CRN) is proposed in this paper. The spatial features including time difference of arrivals (TDOAs) between microphone pairs and steered response power-phase transform (SRP-PHAT) spatial spectrum are extracted in each Gammatone sub-band. The spatial features of different sub-bands with a… More >

  • Open Access

    ARTICLE

    Robust Sound Source Localization Using Convolutional Neural Network Based on Microphone Array

    Xiaoyan Zhao1,*, Lin Zhou2, Ying Tong1, Yuxiao Qi1, Jingang Shi3

    Intelligent Automation & Soft Computing, Vol.30, No.1, pp. 361-371, 2021, DOI:10.32604/iasc.2021.018823 - 26 July 2021

    Abstract In order to improve the performance of microphone array-based sound source localization (SSL), a robust SSL algorithm using convolutional neural network (CNN) is proposed in this paper. The Gammatone sub-band steered response power-phase transform (SRP-PHAT) spatial spectrum is adopted as the localization cue due to its feature correlation of consecutive sub-bands. Since CNN has the “weight sharing” characteristics and the advantage of processing tensor data, it is adopted to extract spatial location information from the localization cues. The Gammatone sub-band SRP-PHAT spatial spectrum are calculated through the microphone signals decomposed in frequency domain by Gammatone… More >

  • Open Access

    ARTICLE

    Microphone Array Speech Separation Algorithm Based on TC-ResNet

    Lin Zhou1,*, Yue Xu1, Tianyi Wang1, Kun Feng1, Jingang Shi2

    CMC-Computers, Materials & Continua, Vol.69, No.2, pp. 2705-2716, 2021, DOI:10.32604/cmc.2021.017080 - 21 July 2021

    Abstract Traditional separation methods have limited ability to handle the speech separation problem in high reverberant and low signal-to-noise ratio (SNR) environments, and thus achieve unsatisfactory results. In this study, a convolutional neural network with temporal convolution and residual network (TC-ResNet) is proposed to realize speech separation in a complex acoustic environment. A simplified steered-response power phase transform, denoted as GSRP-PHAT, is employed to reduce the computational cost. The extracted features are reshaped to a special tensor as the system inputs and implements temporal convolution, which not only enlarges the receptive field of the convolution layer More >

  • Open Access

    ARTICLE

    Sound Source Localization Based on SRP-PHAT Spatial Spectrum and Deep Neural Network

    Xiaoyan Zhao1, *, Shuwen Chen2, Lin Zhou3, Ying Chen3, 4

    CMC-Computers, Materials & Continua, Vol.64, No.1, pp. 253-271, 2020, DOI:10.32604/cmc.2020.09848 - 20 May 2020

    Abstract Microphone array-based sound source localization (SSL) is a challenging task in adverse acoustic scenarios. To address this, a novel SSL algorithm based on deep neural network (DNN) using steered response power-phase transform (SRP-PHAT) spatial spectrum as input feature is presented in this paper. Since the SRP-PHAT spatial power spectrum contains spatial location information, it is adopted as the input feature for sound source localization. DNN is exploited to extract the efficient location information from SRP-PHAT spatial power spectrum due to its advantage on extracting high-level features. SRP-PHAT at each steering position within a frame is More >

Displaying 1-10 on page 1 of 5. Per Page