Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (7)
  • Open Access

    ARTICLE

    Modeling and Simulation of a Hybrid Jet-Impingement/Micro-Channel Heat Sink

    Taidong Xu1,2, Hao Liu2, Dejun Zhang1,2, Yadong Li2, Xiaoming Zhou2,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.17, No.1, pp. 109-121, 2021, DOI:10.32604/fdmp.2021.010608 - 09 February 2021

    Abstract With the progressive increase in the number of transistors that can be accommodated on a single integrated circuit, new strategies are needed to extract heat from these devices in an efficient way. In this regard methods based on the combination of the so-called “jet impingement” and “micro-channel” approaches seem extremely promising for possible improvement and future applications in electronics as well as the aerospace and biomedical fields. In this paper, a hybrid heat sink based on these two technologies is analysed in the frame of an integrated model. Dedicated CFD simulation of the coupled flow/temperature More >

  • Open Access

    ARTICLE

    A Numerical Investigation into the Influence of Electrode-Related Parameters on Electroosmotic Mixing and Related Mechanisms

    Chunsheng Wang*, Dongxing Shang

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.3, pp. 465-473, 2020, DOI:10.32604/fdmp.2020.08828 - 25 May 2020

    Abstract Electroosmosis is an effective method for liquid mixing. It is associated with the motion of a liquid in a microchannel induced by an applied electric field. In this manuscript, a numerical model is elaborated and implemented for the case of a straight channel with a single electrode pair. In particular, the Navier-Stokes equation combined with the Convection-diffusion and Helmholtz-Smoluchowski equation are used to simulate the resulting flow field. The influence of various electrode parameters on the mixing efficiency and the related mechanisms are investigated. The numerical results show that a pair of eddies are produced More >

  • Open Access

    ARTICLE

    Mechanical Modelling of Confined Cell Migration Across Constricted-curved Micro-channels

    R. Allena*,†

    Molecular & Cellular Biomechanics, Vol.11, No.3, pp. 185-208, 2014, DOI:10.3970/mcb.2014.011.185

    Abstract Confined migration is a crucial phenomenon during embryogenesis, immune response and cancer. Here, a two-dimensional finite element model of a HeLa cell migrating across constricted–curved micro-channels is proposed. The cell is modelled as a continuum with embedded cytoplasm and nucleus, which are described by standard Maxwell viscoelastic models. The decomposition of the deformation gradient is employed to define the cyclic active strains of protrusion and contraction, which are synchronized with the adhesion forces between the cell and the substrate. The micro-channels are represented by two rigid walls and exert an additional viscous force on the… More >

  • Open Access

    ARTICLE

    A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON TWO-PHASE PRESSURE DROP IN FLOW BOILING MICRO-CHANNELS

    Sira Saisorna,b, Somchai Wongwisesb,c,∗

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-7, 2012, DOI:10.5098/hmt.v3.1.3007

    Abstract Two-phase pressure drop during flow boiling has been studied for several decades. Obviously, the publications available on micro-channels are relatively small compared with those for ordinarily sized channels. Although the use of micro-channels yields several advantages, the pressure drop taking p lace in these extremely small channels is higher than that in the ordinarily sized channels because of the increased wall friction. The knowledge of the two-phase pressure drop characteristics in addition to heat transfer phenomena is essential to the design and evaluation of the micro-systems. In this paper, recent research on the flow boiling More >

  • Open Access

    ARTICLE

    A CRITICAL REVIEW OF RECENT INVESTIGATIONS ON FLOW PATTERN AND HEAT TRANSFER DURING FLOW BOILING IN MICRO-CHANNELS

    Sira Saisorna,b, Somchai Wongwisesb,c,*

    Frontiers in Heat and Mass Transfer, Vol.3, No.1, pp. 1-15, 2012, DOI:10.5098/hmt.v3.1.3006

    Abstract A summary of recent research on flow boiling in micro-channels is provided in this article. This review aims to survey and identify new findings arising in this important area, which may contribute to optimum design and process control of high performance miniature devices comprising extremely small channels. Several criteria for defining a micro-channel are presented at first and the recent works on micro-scale flow boiling are subsequently described into two parts including flow visualization and two-phase heat transfer. The results obtained from a number of p revious studies show that the flow behaviours and heat More >

  • Open Access

    ARTICLE

    HOT WATER COOLED HEAT SINKS FOR EFFICIENT DATA CENTER COOLING: TOWARDS ELECTRONIC COOLING WITH HIGH EXERGETIC UTILITY

    Peter Kastena, Severin Zimmermanna, Manish K. Tiwaria, Bruno Michelb, Dimos Poulikakosa,*

    Frontiers in Heat and Mass Transfer, Vol.1, No.2, pp. 1-10, 2010, DOI:10.5098/hmt.v1.2.3006

    Abstract Electronic data center cooling using hot water is proposed for high system exergetic utility. The proof-of-principle is provided by numerically modeling a manifold micro-channel heat sink for cooling microprocessors of a data center. An easily achievable 0.5l/min per chip water flow, with 60°C inlet water temperature, is found sufficient to address the typical data center thermal loads. A maximum temperature difference of ~8°C was found between the solid and liquid, confirming small exergetic destruction due to heat transport across a temperature differential. The high water outlet temperature from the heat sink opens the possibility of More >

  • Open Access

    ABSTRACT

    Motion of individual cells in high hematocrit blood flow in micro-channels

    T. Ishikawa1, H. Fujiwara1, N. Matsuki2, R. Lima3, Y. Imai1, T. Yamaguchi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.9, No.2, pp. 77-78, 2009, DOI:10.3970/icces.2009.009.077

    Abstract In a small artery, the blood is no longer assumed as a homogeneous fluid, because the size of blood cells cannot be neglected compared to the generated flow field. In such a case, we need to treat the blood as a multi-phase fluid, and investigate the motion of individual cells in discussing the flow field. Blood may be modelled as a suspension of red blood cells (RBCs) in plasma, because about 99% of volume fraction of blood cells is RBCs.
    In order to measure a blood flow experimentally, various methods have been employed. However, most of… More >

Displaying 1-10 on page 1 of 7. Per Page