Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (45)
  • Open Access

    ARTICLE

    Ensemble Filter-Wrapper Text Feature Selection Methods for Text Classification

    Oluwaseun Peter Ige1,2, Keng Hoon Gan1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1847-1865, 2024, DOI:10.32604/cmes.2024.053373 - 27 September 2024

    Abstract Feature selection is a crucial technique in text classification for improving the efficiency and effectiveness of classifiers or machine learning techniques by reducing the dataset’s dimensionality. This involves eliminating irrelevant, redundant, and noisy features to streamline the classification process. Various methods, from single feature selection techniques to ensemble filter-wrapper methods, have been used in the literature. Metaheuristic algorithms have become popular due to their ability to handle optimization complexity and the continuous influx of text documents. Feature selection is inherently multi-objective, balancing the enhancement of feature relevance, accuracy, and the reduction of redundant features. This… More >

  • Open Access

    ARTICLE

    Far and Near Optimization: A New Simple and Effective Metaphor-Less Optimization Algorithm for Solving Engineering Applications

    Tareq Hamadneh1,2, Khalid Kaabneh3, Omar Alssayed4, Kei Eguchi5,*, Zeinab Monrazeri6, Mohammad Dehghani6

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1725-1808, 2024, DOI:10.32604/cmes.2024.053236 - 27 September 2024

    Abstract In this article, a novel metaheuristic technique named Far and Near Optimization (FNO) is introduced, offering versatile applications across various scientific domains for optimization tasks. The core concept behind FNO lies in integrating global and local search methodologies to update the algorithm population within the problem-solving space based on moving each member to the farthest and nearest member to itself. The paper delineates the theory of FNO, presenting a mathematical model in two phases: (i) exploration based on the simulation of the movement of a population member towards the farthest member from itself and (ii)… More >

  • Open Access

    ARTICLE

    BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems

    Farouq Zitouni1,*, Saad Harous2, Abdulaziz S. Almazyad3, Ali Wagdy Mohamed4,5, Guojiang Xiong6, Fatima Zohra Khechiba1, Khadidja Kherchouche1

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 219-265, 2024, DOI:10.32604/cmes.2024.052001 - 20 August 2024

    Abstract Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems. This approach aims to leverage the strengths of multiple algorithms, enhancing solution quality, convergence speed, and robustness, thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks. In this paper, we introduce a hybrid algorithm that amalgamates three distinct metaheuristics: the Beluga Whale Optimization (BWO), the Honey Badger Algorithm (HBA), and the Jellyfish Search (JS) optimizer. The proposed hybrid algorithm will be referred to as BHJO. Through this fusion, the BHJO algorithm aims to… More >

  • Open Access

    REVIEW

    Systematic Review: Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms

    Darakhshan Syed*, Ghulam Muhammad, Safdar Rizvi

    Intelligent Automation & Soft Computing, Vol.39, No.3, pp. 437-476, 2024, DOI:10.32604/iasc.2024.050681 - 11 July 2024

    Abstract Cloud Computing has the ability to provide on-demand access to a shared resource pool. It has completely changed the way businesses are managed, implement applications, and provide services. The rise in popularity has led to a significant increase in the user demand for services. However, in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization. This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms. Specifically, metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic. More >

  • Open Access

    ARTICLE

    Enhancing Wireless Sensor Network Efficiency through Al-Biruni Earth Radius Optimization

    Reem Ibrahim Alkanhel1, Doaa Sami Khafaga2, Ahmed Mohamed Zaki3, Marwa M. Eid4,5, Abdyalaziz A. Al-Mooneam6, Abdelhameed Ibrahim7, S. K. Towfek3,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 3549-3568, 2024, DOI:10.32604/cmc.2024.049582 - 20 June 2024

    Abstract The networks of wireless sensors provide the ground for a range of applications, including environmental monitoring and industrial operations. Ensuring the networks can overcome obstacles like power and communication reliability and sensor coverage is the crux of network optimization. Network infrastructure planning should be focused on increasing performance, and it should be affected by the detailed data about node distribution. This work recommends the creation of each sensor’s specs and radius of influence based on a particular geographical location, which will contribute to better network planning and design. By using the ARIMA model for time… More >

  • Open Access

    ARTICLE

    A Spectral Convolutional Neural Network Model Based on Adaptive Fick’s Law for Hyperspectral Image Classification

    Tsu-Yang Wu1,2, Haonan Li2, Saru Kumari3, Chien-Ming Chen1,*

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 19-46, 2024, DOI:10.32604/cmc.2024.048347 - 25 April 2024

    Abstract Hyperspectral image classification stands as a pivotal task within the field of remote sensing, yet achieving high-precision classification remains a significant challenge. In response to this challenge, a Spectral Convolutional Neural Network model based on Adaptive Fick’s Law Algorithm (AFLA-SCNN) is proposed. The Adaptive Fick’s Law Algorithm (AFLA) constitutes a novel metaheuristic algorithm introduced herein, encompassing three new strategies: Adaptive weight factor, Gaussian mutation, and probability update policy. With adaptive weight factor, the algorithm can adjust the weights according to the change in the number of iterations to improve the performance of the algorithm. Gaussian… More >

  • Open Access

    ARTICLE

    Hybrid Optimization Algorithm for Handwritten Document Enhancement

    Shu-Chuan Chu1, Xiaomeng Yang1, Li Zhang2, Václav Snášel3, Jeng-Shyang Pan1,4,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3763-3786, 2024, DOI:10.32604/cmc.2024.048594 - 26 March 2024

    Abstract The Gannet Optimization Algorithm (GOA) and the Whale Optimization Algorithm (WOA) demonstrate strong performance; however, there remains room for improvement in convergence and practical applications. This study introduces a hybrid optimization algorithm, named the adaptive inertia weight whale optimization algorithm and gannet optimization algorithm (AIWGOA), which addresses challenges in enhancing handwritten documents. The hybrid strategy integrates the strengths of both algorithms, significantly enhancing their capabilities, whereas the adaptive parameter strategy mitigates the need for manual parameter setting. By amalgamating the hybrid strategy and parameter-adaptive approach, the Gannet Optimization Algorithm was refined to yield the AIWGOA. More >

  • Open Access

    ARTICLE

    Prediction of Ground Vibration Induced by Rock Blasting Based on Optimized Support Vector Regression Models

    Yifan Huang1, Zikang Zhou1,2, Mingyu Li1, Xuedong Luo1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 3147-3165, 2024, DOI:10.32604/cmes.2024.045947 - 11 March 2024

    Abstract Accurately estimating blasting vibration during rock blasting is the foundation of blasting vibration management. In this study, Tuna Swarm Optimization (TSO), Whale Optimization Algorithm (WOA), and Cuckoo Search (CS) were used to optimize two hyperparameters in support vector regression (SVR). Based on these methods, three hybrid models to predict peak particle velocity (PPV) for bench blasting were developed. Eighty-eight samples were collected to establish the PPV database, eight initial blasting parameters were chosen as input parameters for the prediction model, and the PPV was the output parameter. As predictive performance evaluation indicators, the coefficient of More >

  • Open Access

    ARTICLE

    An Enhanced Equilibrium Optimizer for Solving Optimization Tasks

    Yuting Liu1, Hongwei Ding1,*, Zongshan Wang1,*, Gaurav Dhiman2,3,4, Zhijun Yang1, Peng Hu5

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2385-2406, 2023, DOI:10.32604/cmc.2023.039883 - 29 November 2023

    Abstract The equilibrium optimizer (EO) represents a new, physics-inspired metaheuristic optimization approach that draws inspiration from the principles governing the control of volume-based mixing to achieve dynamic mass equilibrium. Despite its innovative foundation, the EO exhibits certain limitations, including imbalances between exploration and exploitation, the tendency to local optima, and the susceptibility to loss of population diversity. To alleviate these drawbacks, this paper introduces an improved EO that adopts three strategies: adaptive inertia weight, Cauchy mutation, and adaptive sine cosine mechanism, called SCEO. Firstly, a new update formula is conceived by incorporating an adaptive inertia weight… More >

  • Open Access

    ARTICLE

    An Effective Runge-Kutta Optimizer Based on Adaptive Population Size and Search Step Size

    Ala Kana, Imtiaz Ahmad*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3443-3464, 2023, DOI:10.32604/cmc.2023.040775 - 08 October 2023

    Abstract A newly proposed competent population-based optimization algorithm called RUN, which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism, has gained wider interest in solving optimization problems. However, in high-dimensional problems, the search capabilities, convergence speed, and runtime of RUN deteriorate. This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN. Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms. Unlike the original RUN where population size is fixed throughout… More >

Displaying 1-10 on page 1 of 45. Per Page