Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Anomaly Detection in Imbalanced Encrypted Traffic with Few Packet Metadata-Based Feature Extraction

    Min-Gyu Kim1, Hwankuk Kim2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.1, pp. 585-607, 2024, DOI:10.32604/cmes.2024.051221 - 20 August 2024

    Abstract In the IoT (Internet of Things) domain, the increased use of encryption protocols such as SSL/TLS, VPN (Virtual Private Network), and Tor has led to a rise in attacks leveraging encrypted traffic. While research on anomaly detection using AI (Artificial Intelligence) is actively progressing, the encrypted nature of the data poses challenges for labeling, resulting in data imbalance and biased feature extraction toward specific nodes. This study proposes a reconstruction error-based anomaly detection method using an autoencoder (AE) that utilizes packet metadata excluding specific node information. The proposed method omits biased packet metadata such as… More >

  • Open Access

    ARTICLE

    Machine Learning Security Defense Algorithms Based on Metadata Correlation Features

    Ruchun Jia, Jianwei Zhang*, Yi Lin

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2391-2418, 2024, DOI:10.32604/cmc.2024.044149 - 27 February 2024

    Abstract With the popularization of the Internet and the development of technology, cyber threats are increasing day by day. Threats such as malware, hacking, and data breaches have had a serious impact on cybersecurity. The network security environment in the era of big data presents the characteristics of large amounts of data, high diversity, and high real-time requirements. Traditional security defense methods and tools have been unable to cope with the complex and changing network security threats. This paper proposes a machine-learning security defense algorithm based on metadata association features. Emphasize control over unauthorized users through… More >

  • Open Access

    ARTICLE

    Real-Time Spammers Detection Based on Metadata Features with Machine Learning

    Adnan Ali1, Jinlong Li1, Huanhuan Chen1, Uzair Aslam Bhatti2, Asad Khan3,*

    Intelligent Automation & Soft Computing, Vol.38, No.3, pp. 241-258, 2023, DOI:10.32604/iasc.2023.041645 - 27 February 2024

    Abstract Spammer detection is to identify and block malicious activities performing users. Such users should be identified and terminated from social media to keep the social media process organic and to maintain the integrity of online social spaces. Previous research aimed to find spammers based on hybrid approaches of graph mining, posted content, and metadata, using small and manually labeled datasets. However, such hybrid approaches are unscalable, not robust, particular dataset dependent, and require numerous parameters, complex graphs, and natural language processing (NLP) resources to make decisions, which makes spammer detection impractical for real-time detection. For… More >

  • Open Access

    ARTICLE

    A Novel Metadata Based Multi-Label Document Classification Technique

    Naseer Ahmed Sajid1, Munir Ahmad1, Atta-ur Rahman2,*, Gohar Zaman3, Mohammed Salih Ahmed4, Nehad Ibrahim2, Mohammed Imran B. Ahmed4, Gomathi Krishnasamy6, Reem Alzaher2, Mariam Alkharraa2, Dania AlKhulaifi2, Maryam AlQahtani2, Asiya A. Salam6, Linah Saraireh5, Mohammed Gollapalli6, Rashad Ahmed7

    Computer Systems Science and Engineering, Vol.46, No.2, pp. 2195-2214, 2023, DOI:10.32604/csse.2023.033844 - 09 February 2023

    Abstract From the beginning, the process of research and its publication is an ever-growing phenomenon and with the emergence of web technologies, its growth rate is overwhelming. On a rough estimate, more than thirty thousand research journals have been issuing around four million papers annually on average. Search engines, indexing services, and digital libraries have been searching for such publications over the web. Nevertheless, getting the most relevant articles against the user requests is yet a fantasy. It is mainly because the articles are not appropriately indexed based on the hierarchies of granular subject classification. To… More >

  • Open Access

    ARTICLE

    LAME: Layout-Aware Metadata Extraction Approach for Research Articles

    Jongyun Choi1, Hyesoo Kong2, Hwamook Yoon2, Heungseon Oh3, Yuchul Jung1,*

    CMC-Computers, Materials & Continua, Vol.72, No.2, pp. 4019-4037, 2022, DOI:10.32604/cmc.2022.025711 - 29 March 2022

    Abstract The volume of academic literature, such as academic conference papers and journals, has increased rapidly worldwide, and research on metadata extraction is ongoing. However, high-performing metadata extraction is still challenging due to diverse layout formats according to journal publishers. To accommodate the diversity of the layouts of academic journals, we propose a novel LAyout-aware Metadata Extraction (LAME) framework equipped with the three characteristics (e.g., design of automatic layout analysis, construction of a large meta-data training set, and implementation of metadata extractor). In the framework, we designed an automatic layout analysis using PDFMiner. Based on the More >

  • Open Access

    ARTICLE

    Protecting Data Mobility in Cloud Networks Using Metadata Security

    R. Punithavathi1,*, M. Kowsigan2, R. Shanthakumari3, Miodrag Zivkovic4, Nebojsa Bacanin4, Marko Sarac4

    Computer Systems Science and Engineering, Vol.42, No.1, pp. 105-120, 2022, DOI:10.32604/csse.2022.020486 - 02 December 2021

    Abstract At present, health care applications, government services, and banking applications use big data with cloud storage to process and implement data. Data mobility in cloud environments uses protection protocols and algorithms to secure sensitive user data. Sometimes, data may have highly sensitive information, leading users to consider using big data and cloud processing regardless of whether they are secured are not. Threats to sensitive data in cloud systems produce high risks, and existing security methods do not provide enough security to sensitive user data in cloud and big data environments. At present, several security solutions… More >

  • Open Access

    ARTICLE

    PCN2: Parallel CNN to Diagnose COVID-19 from Radiographs and Metadata

    Abdullah Baz1, Mohammed Baz2,*

    Intelligent Automation & Soft Computing, Vol.31, No.2, pp. 1051-1069, 2022, DOI:10.32604/iasc.2022.020304 - 22 September 2021

    Abstract COVID-19 constitutes one of the devastating pandemics plaguing humanity throughout the centuries; within about 18 months since its appearing, the cumulative confirmed cases hit 173 million, whereas the death toll approaches 3.72 million. Although several vaccines became available for the public worldwide, the speed with which COVID-19 is spread, and its different mutant strains hinder stopping its outbreak. This, in turn, prompting the desperate need for devising fast, cheap and accurate tools via which the disease can be diagnosed in its early stage. Reverse Transcription Polymerase Chain Reaction (RTPCR) test is the mainstay tool used… More >

  • Open Access

    ARTICLE

    An Abstractive Summarization Technique with Variable Length Keywords as per Document Diversity

    Muhammad Yahya Saeed1, Muhammad Awais1, Muhammad Younas1, Muhammad Arif Shah2,*, Atif Khan3, M. Irfan Uddin4, Marwan Mahmoud5

    CMC-Computers, Materials & Continua, Vol.66, No.3, pp. 2409-2423, 2021, DOI:10.32604/cmc.2021.014330 - 28 December 2020

    Abstract Text Summarization is an essential area in text mining, which has procedures for text extraction. In natural language processing, text summarization maps the documents to a representative set of descriptive words. Therefore, the objective of text extraction is to attain reduced expressive contents from the text documents. Text summarization has two main areas such as abstractive, and extractive summarization. Extractive text summarization has further two approaches, in which the first approach applies the sentence score algorithm, and the second approach follows the word embedding principles. All such text extractions have limitations in providing the basic… More >

Displaying 1-10 on page 1 of 8. Per Page