Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Static Analysis Techniques for Fixing Software Defects in MPI-Based Parallel Programs

    Norah Abdullah Al-Johany1,*, Sanaa Abdullah Sharaf1,2, Fathy Elbouraey Eassa1,2, Reem Abdulaziz Alnanih1,2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3139-3173, 2024, DOI:10.32604/cmc.2024.047392 - 15 May 2024

    Abstract The Message Passing Interface (MPI) is a widely accepted standard for parallel computing on distributed memory systems. However, MPI implementations can contain defects that impact the reliability and performance of parallel applications. Detecting and correcting these defects is crucial, yet there is a lack of published models specifically designed for correcting MPI defects. To address this, we propose a model for detecting and correcting MPI defects (DC_MPI), which aims to detect and correct defects in various types of MPI communication, including blocking point-to-point (BPTP), nonblocking point-to-point (NBPTP), and collective communication (CC). The defects addressed by… More >

  • Open Access

    ARTICLE

    A Distributed Heterogeneous Inspection System for High Performance Inline Surface Defect Detection

    Yu-Cheng Chou1, Wei-Chieh Liao2, Yan-Liang Chen2, Ming Chang2, Po Ting Lin3

    Intelligent Automation & Soft Computing, Vol.25, No.1, pp. 79-90, 2019, DOI:10.31209/2018.100000011

    Abstract This paper presents the Distributed Heterogeneous Inspection System (DHIS), which comprises two CUDA workstations and is equipped with CPU distributed computing, CPU concurrent computing, and GPU concurrent computing functions. Thirty-two grayscale images, each with 5,000× 12,288 pixels and simulated defect patterns, were created to evaluate the performances of three system configurations: (1) DHIS; (2) two CUDA workstations with CPU distributed computing and GPU concurrent computing; (3) one CUDA workstation with GPU concurrent computing. Experimental results indicated that: (1) only DHIS can satisfy the time limit, and the average turnaround time of DHIS is 37.65% of More >

Displaying 1-10 on page 1 of 2. Per Page