Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    PROCEEDINGS

    Micro-and Meso-Structures of Ti-6Al-4V Formed by SLM Process and Its Formation Mechanism

    Lixiang Dang1, Yanwen Zeng1, Wei Duan1,*, Yan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.29, No.2, pp. 1-1, 2024, DOI:10.32604/icces.2024.012173

    Abstract In order to regulate the multi-scale structure of Ti-6Al-4V formed by the SLM (selective laser melting) process, this study uses the method of combining numerical simulations with experiments to investigate the effects of SLM process parameters on the phase composition, micro- and meso-structures, and their distribution of Ti-6Al-4V. The study shows that the SLM-formed Ti-6Al-4V is mainly composed of α/α' phases. Horizontally, the specimens at a 0° phase angle mainly show a striped pattern, while the specimens at 67° and 90° phase angles will show a tessellated pattern. Vertically, the specimens at 0°, 67°, and More >

  • Open Access

    ARTICLE

    Mechanical Properties of Soil-Rock Mixture Filling in Fault Zone Based on Mesostructure

    Mei Tao1, Qingwen Ren1,*, Hanbing Bian2, Maosen Cao1, Yun Jia3

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.2, pp. 681-705, 2022, DOI:10.32604/cmes.2022.019522 - 15 June 2022

    Abstract Soil-rock mixture (SRM) filling in fault zone is an inhomogeneous geomaterial, which is composed of soil and rock block. It controls the deformation and stability of the abutment and dam foundation, and threatens the long-term safety of high arch dams. To study the macroscopic and mesoscopic mechanical properties of SRM, the development of a viable mesoscopic numerical simulation method with a mesoscopic model generation technology, and a reasonable parametric model is crucially desired to overcome the limitations of experimental conditions, specimen dimensions, and experiment fund. To this end, this study presents a mesoscopic numerical method… More >

  • Open Access

    ARTICLE

    The Material Deformation and Internal Structure Development of Granular Materials under Different Cyclic Loadings

    Jiao Wang1,*, Xihua Chu2,*, Jinbao Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.2, pp. 653-670, 2022, DOI:10.32604/cmes.2022.018207 - 13 December 2021

    Abstract Common structures in engineering such as slopes, roadbeds, ballasts, etc., are closely related to granular materials. They are usually subjected to long-term cyclic loads. This study mainly focused on the mechanical behaviors of randomly arranged granular materials before they reach a stable state under different cyclic loads. The variation of the maximum axial strain and the influence of CSR (cyclic stress ratio) were analyzed. The energy consumed in each cycle under constant confining stress loading condition is significantly greater than that of the fixed wall loading condition. The internal deformation evolution of granular materials is… More >

  • Open Access

    ARTICLE

    Comparative Investigation of Two Random Medium Models for Concrete Mesostructure

    Shixue Liang1, Zhongshu Xie1, Tiancan Huang2, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.123, No.3, pp. 1079-1103, 2020, DOI:10.32604/cmes.2020.09200 - 28 May 2020

    Abstract Concrete is intrinsically endowed with randomness on meso-scale due to the random distribution of aggregates, mortar, etc. In this paper, two random medium models of concrete mesostructure are developed and comparative studies are provided based on random field representation approach. In the first place, concrete is considered as a kind of one-phase random field, where stochastic harmonic function is adopted as the approach to simulate the random field. Secondly, in order to represent the stochastic distribution of the multi-phase of concrete such as aggregates and mortar, two-phase random field based on the Nataf transformation and More >

  • Open Access

    ARTICLE

    Numerical Studies on Stratified Rock Failure Based on Digital Image Processing Technique at Mesoscale

    Ang Li1, Guo-jian Shao1,2, Pei-rong Du3, Sheng-yong Ding1, Jing-bo Su4

    CMC-Computers, Materials & Continua, Vol.45, No.1, pp. 17-38, 2015, DOI:10.3970/cmc.2015.045.017

    Abstract This paper investigates the failure behaviors of stratified rocks under uniaxial compression using a digital image processing (DIP) based finite difference method (FDM). The two-dimensional (2D) mesostructure of stratified rocks, represented as the internal spatial distribution of two main rock materials (marble and greenschist), is first identified with the DIP technique. And then the binaryzation image information is used to generate the finite difference grid. Finally, the failure behaviors of stratified rock samples are simulated by FDM considering the inhomogeneity of rock materials. In the DIP, an image segmentation algorithm based on seeded region growing… More >

Displaying 1-10 on page 1 of 5. Per Page