Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    A Meshless Collocation Method with Barycentric Lagrange Interpolation for Solving the Helmholtz Equation

    Miaomiao Yang, Wentao Ma, Yongbin Ge*

    CMES-Computer Modeling in Engineering & Sciences, Vol.126, No.1, pp. 25-54, 2021, DOI:10.32604/cmes.2021.012575 - 22 December 2020

    Abstract In this paper, Chebyshev interpolation nodes and barycentric Lagrange interpolation basis function are used to deduce the scheme for solving the Helmholtz equation. First of all, the interpolation basis function is applied to treat the spatial variables and their partial derivatives, and the collocation method for solving the second order differential equations is established. Secondly, the differential equations on a given test node. Finally, based on three kinds of test nodes, numerical experiments show that the present scheme can not only calculate the high wave numbers problems, but also calculate the variable wave numbers problems. More >

  • Open Access

    ARTICLE

    A Meshless Collocation Method Based on the Differential Reproducing Kernel Approximation

    Shih-Wei Yang1, Yung-Ming Wang1, Chih-Ping Wu1,2, Hsuan-Teh Hu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.60, No.1, pp. 1-40, 2010, DOI:10.3970/cmes.2010.060.001

    Abstract A differential reproducing kernel (DRK) approximation-based collocation method is developed for solving ordinary and partial differential equations governing the one- and two-dimensional problems of elastic bodies, respectively. In the conventional reproducing kernel (RK) approximation, the shape functions for the derivatives of RK approximants are determined by directly differentiating the RK approximants, and this is very time-consuming, especially for the calculations of their higher-order derivatives. Contrary to the previous differentiation manipulation, we construct a set of differential reproducing conditions to determine the shape functions for the derivatives of RK approximants. A meshless collocation method based on More >

Displaying 1-10 on page 1 of 2. Per Page