Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (202)
  • Open Access

    REVIEW

    An Integrated Analysis of Yield Prediction Models: A Comprehensive Review of Advancements and Challenges

    Nidhi Parashar1, Prashant Johri1, Arfat Ahmad Khan5, Nitin Gaur1, Seifedine Kadry2,3,4,*

    CMC-Computers, Materials & Continua, Vol.80, No.1, pp. 389-425, 2024, DOI:10.32604/cmc.2024.050240

    Abstract The growing global requirement for food and the need for sustainable farming in an era of a changing climate and scarce resources have inspired substantial crop yield prediction research. Deep learning (DL) and machine learning (ML) models effectively deal with such challenges. This research paper comprehensively analyses recent advancements in crop yield prediction from January 2016 to March 2024. In addition, it analyses the effectiveness of various input parameters considered in crop yield prediction models. We conducted an in-depth search and gathered studies that employed crop modeling and AI-based methods to predict crop yield. The… More >

  • Open Access

    ARTICLE

    Efficient Penetration Testing Path Planning Based on Reinforcement Learning with Episodic Memory

    Ziqiao Zhou1, Tianyang Zhou1,*, Jinghao Xu2, Junhu Zhu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 2613-2634, 2024, DOI:10.32604/cmes.2023.028553

    Abstract Intelligent penetration testing is of great significance for the improvement of the security of information systems, and the critical issue is the planning of penetration test paths. In view of the difficulty for attackers to obtain complete network information in realistic network scenarios, Reinforcement Learning (RL) is a promising solution to discover the optimal penetration path under incomplete information about the target network. Existing RL-based methods are challenged by the sizeable discrete action space, which leads to difficulties in the convergence. Moreover, most methods still rely on experts’ knowledge. To address these issues, this paper… More >

  • Open Access

    ARTICLE

    A New Industrial Intrusion Detection Method Based on CNN-BiLSTM

    Jun Wang, Changfu Si, Zhen Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4297-4318, 2024, DOI:10.32604/cmc.2024.050223

    Abstract Nowadays, with the rapid development of industrial Internet technology, on the one hand, advanced industrial control systems (ICS) have improved industrial production efficiency. However, there are more and more cyber-attacks targeting industrial control systems. To ensure the security of industrial networks, intrusion detection systems have been widely used in industrial control systems, and deep neural networks have always been an effective method for identifying cyber attacks. Current intrusion detection methods still suffer from low accuracy and a high false alarm rate. Therefore, it is important to build a more efficient intrusion detection model. This paper… More >

  • Open Access

    ARTICLE

    Fault Diagnosis Method of Rolling Bearing Based on MSCNN-LSTM

    Chunming Wu1, Shupeng Zheng2,*

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4395-4411, 2024, DOI:10.32604/cmc.2024.049665

    Abstract Deep neural networks have been widely applied to bearing fault diagnosis systems and achieved impressive success recently. To address the problem that the insufficient fault feature extraction ability of traditional fault diagnosis methods results in poor diagnosis effect under variable load and noise interference scenarios, a rolling bearing fault diagnosis model combining Multi-Scale Convolutional Neural Network (MSCNN) and Long Short-Term Memory (LSTM) fused with attention mechanism is proposed. To adaptively extract the essential spatial feature information of various sizes, the model creates a multi-scale feature extraction module using the convolutional neural network (CNN) learning process.… More >

  • Open Access

    ARTICLE

    A Novel Locomotion Rule Rmbedding Long Short-Term Memory Network with Attention for Human Locomotor Intent Classification Using Multi-Sensors Signals

    Jiajie Shen1, Yan Wang1,*, Dongxu Zhang2

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4349-4370, 2024, DOI:10.32604/cmc.2024.047903

    Abstract Locomotor intent classification has become a research hotspot due to its importance to the development of assistive robotics and wearable devices. Previous work have achieved impressive performance in classifying steady locomotion states. However, it remains challenging for these methods to attain high accuracy when facing transitions between steady locomotion states. Due to the similarities between the information of the transitions and their adjacent steady states. Furthermore, most of these methods rely solely on data and overlook the objective laws between physical activities, resulting in lower accuracy, particularly when encountering complex locomotion modes such as transitions.… More >

  • Open Access

    ARTICLE

    Improving the Transmission Security of Vein Images Using a Bezier Curve and Long Short-Term Memory

    Ahmed H. Alhadethi1,*, Ikram Smaoui2, Ahmed Fakhfakh3, Saad M. Darwish4

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4825-4844, 2024, DOI:10.32604/cmc.2024.047852

    Abstract The act of transmitting photos via the Internet has become a routine and significant activity. Enhancing the security measures to safeguard these images from counterfeiting and modifications is a critical domain that can still be further enhanced. This study presents a system that employs a range of approaches and algorithms to ensure the security of transmitted venous images. The main goal of this work is to create a very effective system for compressing individual biometrics in order to improve the overall accuracy and security of digital photographs by means of image compression. This paper introduces… More >

  • Open Access

    ARTICLE

    Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM

    Lin Ma1, Liyong Wang1, Shuang Zeng1, Yutong Zhao1, Chang Liu1, Heng Zhang1, Qiong Wu2,*, Hongbo Ren2

    Energy Engineering, Vol.121, No.6, pp. 1473-1493, 2024, DOI:10.32604/ee.2024.047332

    Abstract Accurate load forecasting forms a crucial foundation for implementing household demand response plans and optimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations, a single prediction model is hard to capture temporal features effectively, resulting in diminished prediction accuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neural network (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), is proposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features from the original data, enhancing the quality of data… More >

  • Open Access

    ARTICLE

    Abnormal State Detection in Lithium-ion Battery Using Dynamic Frequency Memory and Correlation Attention LSTM Autoencoder

    Haoyi Zhong, Yongjiang Zhao, Chang Gyoon Lim*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.2, pp. 1757-1781, 2024, DOI:10.32604/cmes.2024.049208

    Abstract This paper addresses the challenge of identifying abnormal states in Lithium-ion Battery (LiB) time series data. As the energy sector increasingly focuses on integrating distributed energy resources, Virtual Power Plants (VPP) have become a vital new framework for energy management. LiBs are key in this context, owing to their high-efficiency energy storage capabilities essential for VPP operations. However, LiBs are prone to various abnormal states like overcharging, over-discharging, and internal short circuits, which impede power transmission efficiency. Traditional methods for detecting such abnormalities in LiB are too broad and lack precision for the dynamic and… More >

  • Open Access

    ARTICLE

    Fusion of Spiral Convolution-LSTM for Intrusion Detection Modeling

    Fei Wang, Zhen Dong*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2315-2329, 2024, DOI:10.32604/cmc.2024.048443

    Abstract Aiming at the problems of low accuracy and slow convergence speed of current intrusion detection models, SpiralConvolution is combined with Long Short-Term Memory Network to construct a new intrusion detection model. The dataset is first preprocessed using solo thermal encoding and normalization functions. Then the spiral convolution-Long Short-Term Memory Network model is constructed, which consists of spiral convolution, a two-layer long short-term memory network, and a classifier. It is shown through experiments that the model is characterized by high accuracy, small model computation, and fast convergence speed relative to previous deep learning models. The model More >

  • Open Access

    ARTICLE

    Research on Performance Optimization of Spark Distributed Computing Platform

    Qinlu He1,*, Fan Zhang1, Genqing Bian1, Weiqi Zhang1, Zhen Li2

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2833-2850, 2024, DOI:10.32604/cmc.2024.046807

    Abstract Spark, a distributed computing platform, has rapidly developed in the field of big data. Its in-memory computing feature reduces disk read overhead and shortens data processing time, making it have broad application prospects in large-scale computing applications such as machine learning and image processing. However, the performance of the Spark platform still needs to be improved. When a large number of tasks are processed simultaneously, Spark’s cache replacement mechanism cannot identify high-value data partitions, resulting in memory resources not being fully utilized and affecting the performance of the Spark platform. To address the problem that… More >

Displaying 1-10 on page 1 of 202. Per Page